Scilab Manual for
Operating Systems Lab
by Dr Maheswari R

Computer Engineering
VIT CHENNAT!

Solutions provided by
Dr Maheswari R
Computer Engineering
Vit Chennai

January 25, 2026

"Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions 3

1 First Come First Serve Non pre-emptive CPU Scheduling
using Scilab 6

2 Shortest Job First (SJF) Pre-emptive CPU Scheduling us-
ing Scilab 8

3 Graphical Analysis with Waiting time & Average waiting
time of CPU Scheduling Algorithms using Scilab 10

4 Graphical Analysis with turn-around time & Average turnaround
time of CPU Scheduling Algorithms using Scilab 14

5 Round Robin (RR) Pre-emptive CPU Scheduling using Scilab 18

6 Comparison of Various Partition Allocation Algorithms us-

ing Scilab 20
7 Deadlock Avoidance using Scilab 26
8 Process Synchronization Techniques using Scilab 28
9 Memory Management using Scilab 30
10 Page Replacement Algorithm using Scilab 35

List of Experiments

Solution 1.0

Solution 2.0
Solution 3.0
Solution 4.0
Solution 5.0
Solution 6.0

Solution 7.0
Solution 8.0

Solution 9.0

Solution 10.0
AP 1
AP 2
AP 3
AP 4
AP 5
AP 6
AP 7
AP 8
AP 9
AP 10

AP 11

First Come First Serve Non Preemptive CPU Schedul-

ing using Scilabo
Shortest Job First
Graphical Analysis WT and AWT
Analysis TAT and ATAT
Round Robin Scheduling
Comparison of Various Partition Allocation Algo-
rithms using Scilab
Banker Algorithm Deadlock Avoidance using Scilab
Dekker Process Synchronization Techniques using
Scilabo
Memory Management using Scilab First Fit Best
Fit and Worst Fit
Optimal Page Replacement Algorithm using Scilab
Optimal page replacement
Worst Fit Memory Allocation
First Fit Memory Allocation
Display Function
Best Fit Memory Allocation
Dekker Algorithm
Deadlock Bankers Algorithm
Round Robin Scheduling New
Display Function of Round Robin
SJF algorithm for Turn Around Time and Average
Turn Around Time calculation
Round Robin Scheduling for Turn Around Time
and Average Turn Around Time calculation

10
14
18

20

28

30
35
40
41
42
43
44
47
49
o1
51

93

o6

AP 12 FCFS Turn Around and Average Turn Around Cal-

culation 57
AP 13 SJF for Turn Around Time and Average Turn Around

Time calculation 58
AP 14 Round Robin Scheduling for Waiting and Average

Waiting Time calculation 61
AP 15 FCFS Waiting and Average Waiting Calculation . 62
AP 16 SJENew 64
AP 17 Display Function SJF new 66
AP 18 First Come First Serve CPU Scheduling 67

List of Figures

3.1 Graphical Analysis WT and AWT
4.1 Analysis TAT and ATAT,

6.1 Comparison of Various Partition Allocation Algorithms using
Scilab

W DN =

ot

D

Experiment: 1

First Come First Serve Non
pre-emptive CPU Scheduling
using Scilab

check Appendix AP 18 for dependency:

fcfs.sci

Scilab code Solution 1.0 First Come First Serve Non Preemptive CPU
Scheduling using Scilab

clear;

clc;

//WINDOWS 10 64—-BIT OS , Scilab and toolbox versions
6.1.0.

//Scheduling is a matter of managing queues and to
decide which of the process have to be executed
next to achieve high efficiency level.

//First Come First Serve (FCFS) Non Pre—emptive
Jobs are always executed on a first —come, first —
serve basis.

7

8 //Functions to be loaded

9 exec(”fcfs.sci”);// fcfs.sci dependency file
10

11

12 num=4; //no of processes P1,P2 P3 P4

13

14 bt=[10 2 8 6]; //Sample burst time

15 wt=zeros (1,num); //waiting time

16 tat=zeros (1,num); //turn around time

17

18 disp(” First Come First Serve (FCFS) Non Pre—
emptive CPU Scheduling”);

19 disp(” Burst time of the given Process P1=10, P2
—2, P3=8, P4=6");

20

21 disp(’Waiting Time of each Process’); //displaying
the waiting time

22

23 fcfs = firstcomefirstserve (num,bt,wt,tat) //
Calling first come first serve function

=W N =

S Ot

Experiment: 2

Shortest Job First (SJF)
Pre-emptive CPU Scheduling
using Scilab

check Appendix AP 17 for dependency:

display_sjf_new.sci

Scilab code Solution 2.0 Shortest Job First

clear;
clc;

//WINDOWS 10 64—BIT OS , Scilab and toolbox versions
6.1.0.

//SJF scheduling is employed when several processes
arrive almost at the same time, so as to avoid
conflict , ensure maximum CPU utilization with
minimum waiting time, turnaround time to minimize
starvation. The algorthm can be used for both

8

© 00

10

12
13
14
15
16
17
18
19
20
21

22

23
24
25
26
27

cases i.e., when arrival time is the same for
or most processes and when there are slightly

all

different arrival times. In case of same arrival

time , the values amy be set to 0 by default by

the user
// loading the necessary functions

exec(”sjf_new.sci”);
exec("display_sjf_new.sci”);

num=4; //no of processes P1,P2 P3 P4
pt=[10 2 8 6 1; //process time or burst time
pid=[1 2 3 4]; //process id

wt=zeros (1,num) ; //waiting time
tat=zeros(l,num); //turn around time

total=0; //total waiting time

total2=0; //total turn around time

disp(”Shortest Job First (SJF) Pre—emptive CPU
Scheduling”) ;

disp (" Burst time of the given Process P1=10, P2=2,

P3=8, P4=6");

disp(”Sorted Process based on its Shortest Job”);

sjf = shorestjobfirst (pid,num,pt,wt,tat);
Calling shorest job first function

//

check Appendix AP 16 for dependency:

sjf_new.sci

W N =

Experiment: 3

Graphical Analysis with
Waiting time & Average
waiting time of CPU

Scheduling Algorithms using
Scilab

check Appendix AP 15 for dependency:

fcfs_wt_awt.sci

Scilab code Solution 3.0 Graphical Analysis WT and AWT

clear;

clc;

//WINDOWS 10 64—BIT OS , Scilab and toolbox versions
6.1.0.

10

Waiting time

Graphical Analysis: Waiting Time Vs Average Waiting Time

- B FOFS
18 [
. RR

1 2 3 4 <]

Process

Figure 3.1: Graphical Analysis WT and AWT

11

© 00 N O

10

11

12
13
14
15
16
17
18

19
20

21
22

23
24

25
26
27

//Scheduling algorithms deals to minimize queuing
delay and to optimize performance of queuing
environment. In this analysis , some common
scheduling algorithms like First Come First Serve

(FCFS), Shortest Job First (SJF) and Round Robin
(RR) Scheduling are studied and reviewed on the
basis of their working strategy

//Functions to be loaded

exec (" fefs_wt_awt.sci”); // fefs_wt_awt.sci
dependency file

exec("sjf_wt_awt.sci”); // sjf_wt_awt.sci dependency
file

exec("rr_wt_awt.sci”); // rr_wt_awt.sci dependency

file

num=4; //no of processes P1,P2 P3 P4
bt=[10 2 8 6]; //Sample burst time
wt=zeros (1,num); //waiting time
tat=zeros(1,num); //turn around time

disp(” Graphical Analysis— Waiting Time vs Average
Waiting Time of Scheduling Algorithms”);

disp (" Burst time of the given Process P1=10, P2=2,
P3=8, P4=6");

disp(’Waiting Time of each Process in FCFS’); //
displaying the waiting time in FCFS

fcfs = firstcomefirstserve (num,bt,wt,tat) //

Calling first come first serve function

disp(’Waiting time of each Process in SJF’); //
displaying the Waiting time of each Process in
SJF

12

28

29
30
31

32
33

34
35
36
37
38
39
40
41
42

43
44

45
46

47
48
49
50

sjf = shortestjobfirst (num,bt,wt,tat) // Calling
shortest job first function

disp(’Waiting Time of each Process in Round Robin’);

//displaying the Waititing Time of each Process

in Round Robin

rr= roundrobin(num,bt,wt,tat) // Calling
Round Robin function

/*constructing a rows for graphical representation*/

scf(1);

y = [0,10,20,30,40];

x=[1,2,3,4,5]
avg =
(0,16,12;10,0,5;12,8,15;20,2,15;10.5,6.5,11.75];

/*Matrix avg is set of values obtained from waiting
time for each algorithm FCFS, SJF, RR

respectivelyx/

xtitle (" Graphical Analysis: Waiting Time Vs Average
Waiting Time’, ’Process’, ’Waiting time’);

bar (x,avg) ;

legend ("FCFS” ,”SJF” ,”RR") ;

check Appendix AP 14 for dependency:
rr_wt_awt.sci
check Appendix AP 13 for dependency:

sjf_wt_awt.sci

13

W N =

Experiment: 4

Graphical Analysis with
turn-around time & Average
turnaround time of CPU

Scheduling Algorithms using
Scilab

check Appendix AP 12 for dependency:

fcfs_tat_atat.sci

Scilab code Solution 4.0 Analysis TAT and ATAT

clear;

clc;

//WINDOWS 10 64—BIT OS , Scilab and toolbox versions
6.1.0.

14

Turn Around Time

Graphical Analysis with Turn-Around Time & Average Turn-Around Time of CPU using Scilab

30
. FCFS
I SJF
I RR

25

20

1 2 3 4 <]

Process

Figure 4.1: Analysis TAT and ATAT

15

© 00 N &

10

11

12
13
14
15
16
17
18

19

20
21

22
23

24

25
26

27

//In this analysis, some common scheduling
algorithms like First Come First Serve (FCFS),
Shortest Job First (SJF) and Round Robin (RR)
Scheduling are studied and reviewed on the basis
of their Turn Around Time and Average Turn Around

Time

//Functions to be loaded

exec (" fefs_tat_atat.sci”); // fefs_tat_atat.sci
dependency file for FCFS Scheduling

exec("sjf_tat_atat.sci”); // sjf_tat_atat.sci
dependency file for SJF Scheduling

exec("rr_tat_atat.sci”); // rr_tat_atat.sci
dependency file for RR Scheduling

num=4; //no of processes P1,P2 P3 P4
bt=[10 2 8 6]; //Sample burst time
wt=zeros (1,num); //waiting time
tat=zeros(1,num); //turn around time

disp(” Graphical Analysis with Turn—Around Time &
Average Turn—Around Time of CPU using Scilab”);

disp (” Burst time of the given Process P1=10, P2=2,
P3=8, P4=6");

disp(’Turn Around Time of each Process in FCFS’); //
displaying the Turn Around time in FCFS

fcfs = firstcomefirstserve (num,bt,wt,tat) //
Calling first come first serve function

disp(’Turn Around Time of each Process in SJF’); //
displaying the Turn Around time of each Process

in SJF
sjf = shortestjobfirst (num,bt,wt,tat) // Calling
shortest job first function

16

28
29
30

31
32

33
34
35
36
37
38
39
40
41

42
43

44
45

46
47
48
49
50

disp(’Turn Around Time of each Process in Round
Robin’); //displaying the Turn Around Time of
each Process in Round Robin

rr= roundrobin(num,bt,wt,tat) // Calling
Round Robin function

/*constructing a rows for graphical representationx*/

scf (1) ;

y = [0,10,20,30,40];

x=[1,2,3,4,5]

avg =
[10,26,22;12,2,7;20,16,23;26,8,21;17,13,18.25];

/*Matrix avg is set of values obtained from Turn
Around time for each algorithm FCFS, SJF, RR
respectivelyx/

xtitle (" Graphical Analysis with Turn—Around Time &
Average Turn—Around Time of CPU using Scilab’,”
Process” ,” Turn Around Time”) ;

bar (x,avg) ;

legend ("FCFS” ,”SJF” ,”RR") ;

check Appendix AP 11 for dependency:
rr_tat_atat.sci
check Appendix AP 10 for dependency:

sjf_tat_atat.sci

17

=W N =

S Ot

Experiment: 5

Round Robin (RR)
Pre-emptive CPU Scheduling
using Scilab

check Appendix AP 9 for dependency:

display_rr.sci

Scilab code Solution 5.0 Round Robin Scheduling

clear;
clc;

//WINDOWS 10 64—BIT OS , Scilab and toolbox versions
6.1.0.

// Round Robin (RR)is a pre—emptive scheduling
algorithm . The CPU is shifted to the next process
after fixed interval time, which is called time
quantum/time slice.

18

10

11
12

13
14
15
16
17
18
19
20
21

22
23
24
25
26

//Functions to be loaded

exec ("roundrobin_new.sci”);//dependency file
roundrobin_new . sci

exec (" display_rr.sci”);//dependency file for

function
disp (7 ROUND ROBIN SCHEDULING
”)
at = [0 1 2 3]; // Defining sample Arrival Time
bt = [9 5 3 4]; // Defining sample Burst Time

n=size (at) ;

disp(” Sample Quantum Time= 5 7)

mprintf ("\n”)

q = input(”Enter Quantum Time: 7);

disp(” Process Turnaround time
Waiting time”);

// Calling Round Robin function

rr = roundrobin(g,n,at,bt);

//disp (" Process Turnaround time
Waiting time”) ;

check Appendix AP 8 for dependency:

roundrobin_new.sci

19

Experiment: 6

Comparison of Various
Partition Allocation
Algorithms using Scilab

check Appendix AP 5 for dependency:
best_fit_func.sci
check Appendix AP 4 for dependency:
display_func.sci
check Appendix AP 3 for dependency:

first_fit_func.sci

Scilab code Solution 6.0 Comparison of Various Partition Allocation Al-
gorithms using Scilab

1 clear;

20

Comparison of Warious Partition Allocation Algorithm
200

i N F st Fit
180 B EestFit
I \Warst Fit

160 H

Block Size
=
o
|

Process Mumber

Figure 6.1: Comparison of Various Partition Allocation Algorithms using

Scilab

21

© 00

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24

25
26
27

28
29
30

31

clc;
//WINDOWS 10 64—BIT OS , Scilab and toolbox versions
6.1.0.

//This experiment is compare the various partition
allocation algorithms used by the operating
system for memory allocation

// 1. First —Fit Memory Allocation 2. Best—Fit
Memory Allocation 3. Worst—Fit Memory Allocation

// loading all the necessary functions
exec (" first_fit_func.sci”);
exec("best_fit_func.sci”);
exec("worst_fit_func.sci”);
exec(”display_func.sci”);

// Example problem

p = [90 20 50 200];// Defining sample Process Size
b = [60 100 90 200 60];// Defining sample Block Size

//Determining the number of processes and blocks

size_process = size(p); // Size of the process
array is calculated using size () function

size_process = size_process (2);

size_block = size(b); // Size of the block

array is calculated using size () function
size_block = size_block(2);

/*calling the function, defined in first fit.sci,
for first fit allocationx*/
ff_allot = firstFit(p,b,size_process,size_block)

/*calling the function, defined in best fit.sci, for
best fit allocationx*/
bf_allot = bestFit(p, b, size_process, size_block)

22

32
33

34
35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
53

/*calling the function, defined in worst fit.sci,
for worst fit allocation*/

wf_allot = worstFit(p,b,size_process,size_block);

ff_allotsize = zeros(l,size_process); //
ff_allotsize — size of the selected blocks for
first fit

bf_allotsize = zeros(l,size_process); //
bf_allotsize — size of the selected blocks for
best fit

wf_allotsize = zeros(l,size_process); //
wi_allotsize — size of the selected blocks for

worst fit

// storing the allocated block size for each process
according to the respective fits

for i=1:size_process

if ff_allot(i)~=0 then //
checking if any block is selected
ff_allotsize(i) = b(ff_allot(i)); //

storing the size of the selected block
for first fit

else
ff_allotsize(i) = 0 //
store size as 0 if no block is selected
end ,
if bf_allot (i) “=0 then //
checking if any block is selected
bf_allotsize (i) = b(bf_allot(i)); //
storing the size of the selected block
for best fit
else
bf_allotsize(i) = 0 //

store size as 0 if no block is selected

23

54
55
56

o7

58
99

60
61
62
63
64

65
66
67
68

69

70

71
72
73
74

75
76
77
78
79
80

end ,
if wf_allot(i)~=0 then //
checking if any block is selected
wf_allotsize (i) = b(wf_allot(i)); //
storing the size of the selected block
for worst fit
else
wf_allotsize(i) = O0; //
store size as 0 if no block is selected
end ,
end

//constructing a matrix(y) for graphical
representation of first fit , best fit and worst
fit

y= zeros(size_process,3);

y(:,1) = ff_allotsize; // First fit allotment
size

y(:,2) = bf_allotsize; // Best fit allotment

size

y(:,3) = wf_allotsize; // Worst fit allotment
size

bar(y) // plotting a bar graph

xtitle (" Comparison of Various Partition Allocation
Algorithm” ,” Process Number” ,” Block Size”);
legend (" First Fit” , "Best Fit”, "Worst Fit”);

//printing first fit , best fit and worst fit array

mprintf (" Comparison of Various Partition Allocation
Algorithms using Scilab\n\n”) //displaying the

24

81

82

83
84
85

86

87

88

89

90

91

92

93

94

95

title of experiment
mprintf ("Ex: Process size P1=90, P2=20, P3=50, P4

=2007"); //displaying
the sample Process size considered for the of
experiment

mprintf (7\n Block or hole size Bl= 50, B2= 100,
B3=90, B4=200\n") ; //displaying
the sample Block size considered for the of
experiment

mprintf (" \nFIRST FIT:\n”)
mprintf (" Process no. \tProcess size\tBlock no. Block
size\n”)
display(ff_allot ,ff_allotsize,size_process,p)
//displaying the process and block
allocation by first fit array

mprintf (7 \nBEST FIT:\n”)
mprintf (" Process no. \tProcess size\tBlock no. Block
size\n”)
display(bf_allot ,bf_allotsize,size_process,p)
//displaying the process and block
allocation by best fit array

mprintf (" \nWORST FIT:\n"”)
mprintf (" Process no. \tProcess size\tBlock no. Block
size\n")
display(wf_allot ,wf_allotsize,size_process,p)
//displaying the process and block
allocation by worst fit array

check Appendix AP 2 for dependency:

worst_fit_func.sci

25

I R

co g O Ot

Experiment: 7

Deadlock Avoidance using

Scilab

check Appendix AP 7 for dependency:

Deadlock.sci

Scilab code Solution 7.0 Banker Algorithm Deadlock Avoidance using Scilab

clear;
clc;

//The bankers algorithm is a resource allocation
and deadlock avoidance algorithm that tests for
safety by simulating the allocation for
predetermined maximum possible amounts of all
resources

// Load dependency file
exec (" Deadlock . sci”);

26

10
11
12
13
14
15
16

17

18

19

20

21

22
23

//WINDOWS 10 64—BIT OS , Scilab and toolbox versions
6.1.0.

close;

n=5; // Number of processes

m=3; // Number of resources

disp(” Bankers Algorithm for Deadlock Avoidance”)

mprintf ("\nConsider Number of Processes N=5 ,Number
of resources M=3\n"); // Number of processes and
Number of resources

mprintf ("\n Allocation are [JO 1 0;2 0 0;3 0 2;2 1
2;:0 0 2]”); // Giving the process allocation
values

mprintf ("\nM=[7 5 3;3 2 2;9 0 2;2 2 2:4 3 3]\n"); //

Giving the maximum values

disp(’Following is the SAFE Sequence satisfies the
safety requirement:’); // Disp command prints the
safe sequence

Deadlock(n,m) // Function call of Deadlock —
Bankers Algorithm

27

QU W N~

© 00 J O

10

Experiment: 8

Process Synchronization
Techniques using Scilab

check Appendix AP 6 for dependency:

Process_Synch.sci

Scilab code Solution 8.0 Dekker Process Synchronization Techniques us-
ing Scilab

////DEKKER’S ALGORITHM////

clear;

clc;

//WINDOWS 10 64—-BIT OS , Scilab and toolbox versions
6.1.0.

exec(”Process_Synch.sci”);
//Dekker’s algorithm guarantees mutual exclusion |

freedom from deadlock, and freedom from
starvation .

28

11

12
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27
28
29
30

31
32

33
34
35
36
37
38

//In this algorithm , the position of each process
indicated with the variables turn and flag.

//INITIALIZHQG THE VALUES
cl=1,c2=1,turn=1;
count0=0, count1=0, count=0;

i=0;

//Deafult values

limit=10; //Limit of CS

a=1,b=1; //Time taken in CS by both process

disp(”Process Synchronization using Dekkers
Algorithm in Scilab”);

mprintf ("\nlnput Ex: Time in CS for Pl is 2, P2 is
3, Total Time is 9\n 7)

//INSTRUCTIONS TO PROCEED

mprintf (” 1) Process 1 enters \n”);

mprintf (” 2) Process 2 enters \n”);

mprintf (” 3) Both process enters \n”);

mprintf (7 4) Exit \n”);

mprintf ("\n Enter total time requied by Process 1 in

CS: ")

a = input(” 7)

mprintf (" Enter total time requied by Process 2 in
CS:7)

b = input(” 7)

mprintf (7 Enter total time limit of CS :7)

limit = input(” 7)

//Psyn(a,b,limit);

Psyn(a,b,limit)

//FUNCTION TO IDENTIFY WHICH PROCESS ENTERS NOW

1s

29

Experiment: 9

Memory Management using

Scilab

check Appendix AP 5 for dependency:
best_fit_func.sci
check Appendix AP 4 for dependency:
display_func.sci
check Appendix AP 3 for dependency:

first_fit_func.sci

Scilab code Solution 9.0 Memory Management using Scilab First Fit Best
Fit and Worst Fit

1 clear;

30

© 00 J & Ot

10
11
12

13

14
15

16

17
18
19
20
21
22
23
24
25
26
27

clc;
//WINDOWS 10 64—BIT OS , Scilab and toolbox versions
6.1.0.

//The memory to the processor will be allocated in
several blocks of memory, in order to make a
perfectly organized allocation between the memory

blocks and process, three different partition
and allocation algorithms are used 1. First—Fit
Memory Allocation 2. Best—Fit Memory Allocation
3. Worst—Fit Memory Allocation

/* loading all the necessary functions x*/
exec (" first_fit_func.sci”);

exec (" best_fit_func.sci”?);
exec("worst_fit_func.sci”);
exec(”display_func.sci”);

mprintf (" Memory Management First fit , Best Fit and
Worst Fit Allocation\n 7);
mprintf (7

n 77);

mprintf ("Ex: Process size P1=212, P2=417, P3=112, P4
=426") ;

mprintf (”\n Block or hole size Bl= 100, B2= 500,
B3=200, B4=300, B5=600\n") ;

/* Example problem x*/
p = [212,417,112,426];// process size
b = [100,500,200,300,600];// block or hole size

disp(” Select the Option:”);
mprintf (7 1-First Fit\n”);
mprintf (7 2—Best Fit \n”)
mprintf (7 3—Worst Fit \n”);
/*

31

28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43

44

45
46
47
48
49

50
51
52
53
54
55

56

o7

58

Determining the number of processes and blocks
* /

size_process = size(p);

size_process size_process (2);

size(b);
size_block (2);

size_block
size_block

nl=input (”7”);

if (n1==1) then
// firstfit ();
/*calling the function, defined in first fit.sci,
for first fit allocationx*/
ff_allot = firstFit(p,b,size_process,size_block)
end
if (n1==2) then
/*calling the function, defined in best fit.sci, for
best fit allocationx*/
bf_allot = bestFit(p, b, size_process,
size_block)
end
if (n1==3) then
// worstfit () ;
/*calling the function, defined in worst fit.sci,
for worst fit allocationx*/
wf_allot = worstFit(p,b,size_process,size_block);
end
/ *
ff_allotsize - size of the selected blocks for first
fit
bf_allotsize - size of the selected blocks for best

fit

wf_allotsize - size of the selected blocks for worst
fit

*/

32

59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
75
76
7
78
79
80
81

82

83

84

ff_allotsize
bf_allotsize
wf_allotsize

/* storing the allocated block size for each process
according to the respective fits x*/

zeros (1,size_process);
zeros (1,size_process);
zeros (1,size_process);

for i=1:size_process
if (n1==1) then

if ff_allot(i)~=0 then // checking if any

block is selected
ff_allotsize(i) = b(ff_allot(i)); //
storing the size of the

else

end,
end

block for

first fit

selected

ff_allotsize(i) = 0 // store size as 0
if no block is selected

if (n1==2) then
if bf_allot(i)~“=0 then // checking if any
block is selected
bf_allotsize (i) = b(bf_allot(i)); //
storing the size of the

else

end,
end

block for

best fit

selected

bf_allotsize(i) = 0 // store size as 0
if no block is selected

if (n1==3) then
if wf_allot(i)~“=0 then // checking if any
block is selected
wf_allotsize (i) = b(wf_allot(i)); //
storing the size of the

else

block for

worst fit

33

selected

85

86
87
88
89
90
91
92
93
94

95
96
97
98
99
100

101
102
103
104
105
106

107
108

wf_allotsize(i) = 0; // store size as 0
if no block is selected
end,
end
end
/ *
printing first fit, best fit and worst fit array
* /
if (n1==1) then
mprintf (" \nFIRST FIT:\n”)
mprintf (" Process no. \tProcess size\tBlock no. Block
size\n”)
display(ff_allot,ff_allotsize,size_process,p)
end
if (n1==2) then

mprintf (7 \nBEST FIT:\n”)
mprintf (" Process no. \tProcess size\tBlock no.
Block size\n”)
display(bf_allot ,bf_allotsize,size_process,p)
end
if (n1==3) then

mprintf (7 \nWORST FIT:\n")
mprintf (" Process no. \tProcess size\tBlock no.
Block size\n”)
display(wf_allot ,wf_allotsize,size_process,p)
end

check Appendix AP 2 for dependency:

worst_fit_func.sci

34

W N =

ot

J

Experiment: 10

Page Replacement Algorithm
using Scilab

check Appendix AP 1 for dependency:

PageReplacement.sci

Scilab code Solution 10.0 Optimal Page Replacement Algorithm using
Scilab

clear;

clc;

//WINDOWS 10 64—BIT OS , Scilab and toolbox versions
6.1.0.

// In Optimal page replacement algorithm , the page

that will not be used for the longest period of
time is replaced to make space for the requested

page.

//Functions to be loaded

35

10

11
12

13
14

15
16
17
18
19
20
21
22

23
24

25
26

27

28
29
30
31
32
33
34
35

36

exec ("PageReplacement.sci”); // PageReplacement.sci
dependency file

mprintf (7 Optimal Page Replacement Algorithm using
Scilab\n”)

mprintf (7 Sample Input: No. of frames=4, No. Page=13
”)

mprintf ("\n”)

mprintf (" Sample Page Reference String
7,0,1,2,0,3,0,4,2,3,0,3,27)

frames=cell (10); //Read Frames

pages=cell (30) ; //Read Pages

temp=cell (10); //Read temp

no0fFrames=0;

noOfPages=0;

mprintf ("\n”)

mprintf ("Enter No Of Frames’); //Write to command
window

mprintf ("\n”)

noOfFrames=input (””); // Giving the no.of.Frames
Value

mprintf ("Enter No Of Pages’); //Write to command
window

noOfPages=input (") ; // Giving the no.of.Pages
Value

flagl1=0; //Setting a Flag

flag2=0; //Setting a Flag

flag3=0; //Setting a Flag

faults=0; //Read faults

maximum=0; //Setting it to a marker value

mprintf ("\n”)
mprintf ("Enter Page Reference Values’); //Write to
command window

36

37 for n=1:no0fPages //Giving the first reference value
in first frame

38 // mprintf(” Enter Page reference %d” ,n)

39 pages{n}t=input ("”); //Printing the value in
page

40 end

41

42 pagereplacement (noOfFrames ,noOfPages ,pages) //

Calling pagereplacement function

37

© 00 J O Ot = W N

NN N DN DN DN — o s s e e e
TR W N O O© WO Uik W= O

Appendix

Scilab code AP 1

1 function []= pagereplacement (noOfFrames ,no0OfPages

,pages) ////Page replacement function

for n=1:no0fFrames //Giving the no.of Frames

end

for

frames{nl}t=-1;

i=1:no0fPages // No. of Pages
flagl=0;
flag2=0;
for j=1:noOfFrames
if (frames{j}==pages{i})
flagl=1;
flag2=1;
break;
end
end
if (flagl==0)
for j=1:noOfFrames
if (frames{j}==-1)
faults=faults+1;
frames{j}=pages{i};
flag2=1;
break;
end
end

38

26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
o7
58

59

end
if (flag2==0)
flag3=0;
for j=1:noOfFrames
temp{j}=-1;

for k=i+1:no0fPages
if (frames{j}==pages{k}) //Check the
frames and pages are filled
temp{jl}=k
break;
end
end
end

//For loop for identifying page faults
for j=1:no0OfFrames
if (temp{j}==-1)
pos=j;
flag3=1;
break;
end
end
if (flag3==0)
maximum=temp{0};
pos=0;
for j=1:no0fFrames
if (temp{j}>maximum)
maximum=temp{j}; //Check the
value is long period use or
not
pos=j;
end
end
end
frames{pos}=pages{i}
faults=faults+1; //Check next value is
Equal or to change the position
end

39

60
61
62

63
64

10
11

12
13
14

15
16

end

faults=faults-1;

mprintf ("No Of Page Faluts %d\n”,faults); //Write
Page Faults to command window

endfunction

Optimal page replacement

Scilab code AP 2
1 //Worst—Fit Memory Allocation , the operating
system searches the entire list and allocates the
largest available hole to the process.
//1f a large process comes at a later stage, then
memory may not have space to accommodate it .

function [wf_allot]l=worstFit(p,b,size_process,
size_block)

// Declaring worst fit flag array(wf_flag) which is
used for maintaining the status of each block(
free or busy)

wf_allot = zeros(l,size_process);
// Declaring worst fit array(wf_allot)
wf_flag = zeros(l,size_block);

//For loop for allocating blocks according to worst
fit

for i=1:size_process
k = -1; // k — index
position of the largest block which can
accommodate a process, initially set to

—1
for j=1l:size_block
if p(i)<=b(j) && wf_flag(j) == 0 then //

if process size is less than block

40

17
18

19

20

21
22
23
24
25

26
27

28

29

30
31

size and block is free
if k==-1 then
k = j; // update k with
index positioin of the block
elseif (b(k)<b(j)) // if there is a
larger block which can
accommodate the process
k = j; // update k with the
index position of the larger

block
end,
end,
end
if (k==-1)
wf_allot(i)=0; // if mno block can
accomodate the process, set allotted
block number as 0
else
wf_allot(i) = k; // store the selected
index in the worst fit array in the
index position i(process number)
wf_flag(k) = 1; // set the status of the
selected block as busy
end,

end
endfunction

Worst Fit Memory Allocation

Scilab code AP //First—Fit Memory Allocation
algorithm scans the memory and whenever it finds
the first big enough hole to store a process,

//it stops scanning and loads the process into that
hole/block .

function [ff_allot]l=firstFit(p,b,size_process,
size_block)

41

6
7

10
11
12

13
14
15
16

17

18

19
20
21
22
23

Ot = W N

//Declaring first fit flag array(ff_flag) which is

used for maintaining the status of each block(
free or busy)

ff_allot = zeros(l,size_process); //
Declaring first fit array(ff_allot)
ff_flag = zeros(l,size_block);

// For loop for allocating blocks according to

first fit

for i=1:size_process
for j=1l:size_block
if p(i) <= b(j) && £f_flag(j)==0 then
// if process size is less than block
size and block is free
ff_allot (i) = j;

// store index position of the block

in ff_allot in the index position
process number)
ff_flag(j) = 1;
// set status as busy
break
end ,
end
end
endfunction

First Fit Memory Allocation

Scilab code AP 4

1 //Display Function:It prints all required details
such as Process no. , Process size, Block no.,

//Block size for First Fit, Best Fit and Worst Fit.

function display(allot,allotsize,size_process,p)
for i=1:size_process

42

10
11
12

10
11
12
13

14

if allot(i)==0 then
mprintf ("P%d\t\t%d\t Not allocated
—\n",i,p(i)) // Display
the Process number that could not
allocated
else
mprintf ("P%d\ t \t%d\ t \tB%d\t %d\n”,i,p(i
),allot (i) ,allotsize(i)) // Display
the Process number with allocated
Block number
end,
end
endfunction

Display Function

Scilab code AP 15 //Best Fit Memory Allocation , the
operating system searches the whole memory
according to the size of the given process

//and allocates it to the smallest hole which is big

enough to accommodate it .

function [bf_allot]=bestFit(p,b,size_process,
size_block)

// declaring best fit flag array(bf_flag) which
is used for maintaining the status of each block(
free or busy)

bf_allot = zeros(l,size_process); //
declaring best fit array(bf_allot)
bf_flag = zeros(l,size_block);

// For loop for allocating blocks according to

best fit
for i=1:size_process

43

15

16
17

18
19

20

21

22
23
24
25
26

27
28

29

30
31
32

k = -1; /] k —
index position of the smallest block
which can accommodate a process,
initially set to —1

for j=1l:size_block

if p(i)<=b(j) && bf_flag(j) == 0 then //
if process size is less than block
size and block is free
if k==-1 then

k = j; // update k
with index position of the
block

elseif (b(j)<b(k)) // if there

is a smaller block which can
accommodate the process
k = 3; // update k
with the index position of
the smaller block

end,
end ,
end
if (k==-1)
bf_allot (i)=0; // if no
block can accomodate the process , set
allotted block number as 0
else
bf_allot (i) = k; // store the
selected index in the best fit array
in the index position i(process
number)
bf_flag(k) = 1; // set the
status of the selected block as busy
end,

end
endfunction

Best Fit Memory Allocation

44

© 00 3 O U = W N

W W W N NDNDDNDNDDDNDDNDDDNDDNDND o s = s
N = O © 00 O Ui W HFHEF O O©OWNO U R W= O

[ON]
w

Scilab code AP 6
1 //In this program Dekkers Algorithm is used,
to ensure one process enters the critical section
at a time while the other processes need to wait
for the first one to leave the critical section.

function [] = Psyn(a,b,limit)
while (i<=1limit)
printf ("\n”)
x = input ("SELECT THE OPTION :)

//PROCESS 1 ENTERS
if x==1 then // Option 1
cl=0;
while c2==
if turn==2 then
cl=1;
while turn==2 //do nothing
end
cl=0;
end
end
//critical section
countO=countO+a;
i=i+a;
// yield
cl=1,;
turn=2;
//remainder section
if (countO0>1imit) | (i>1limit) then
printf (" Exceeds the limit of CS\n”)
printf ("END\n") ;
i = 100;
else
if (a>0)
printf (" Process Pl Enters the
Critical section”);
printf ("\nTotal Time of Pl in

45

34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63

64

65
66

Critical Section :%d\n”,count0);
end
printf ("\nlt is the turn process P2\n
")
end
end

//PROCESS 2 ENTERS

if x==2 then // Option 2
c2=0;
while cl==
if turn==
c2=1;
while turn==1 //do nothing
end
c2=0;
end
end

//critical section

countl=countl+b;

i=i+b;

// yield

c2=1;

turn=1;

//remainder section

if (count1>limit) | (i>1limit) then
printf (" Exceeds the limit of CS\n”)
printf ("END\n") ;
i = 100;

else
if (b>0)
printf (" Process P2 Enters the

Critical section”);
printf ("\nTotal Time of P2 in
Critical Section :%d\n”,countl);
end
printf ("\nlt is the turn process Pl\n
77);

46

67
68
69
70
71
72

73
74
75
76
7
78
79
80
81
82
83
84
85

O O i W N

10
11
12
13

end
end

//BOTH PROCESS ENTER AT SAME TIME Option 3
if x==3 then
printf ("\nBoth process cant enter at same
time in Critical Section\n”);
if i>1limit then
printf ("END\n”) ;
i = 100;
end
end

//END for OTHER CONDITIONS Option 4
if x==4 then
printf (”\nEND\n”) ;
i = 100;
end
end
endfunction

Dekker Algorithm

Scilab code AP17 // Deadlock — Bankers Algorithm
function [] = Deadlock(n,m)

// PO P1 P2 P3 and P4 are the process names.

A=[0 1 0;2 0 0;3 0 2;2 1 2;0 0 2]; // Giving the
process allocation values

M=[7 5 3;3 2 2;9 0 2;2 2 2;4 3 3]; // Giving the
maximum values

L=[3 3 2]; // This gives the available values

ind=0;

ansl=1list () ;

z=1;

f=1ist () ;

47

14

15
16
17
18

19

20

21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

37
38
39
40
41

for k=1:5 // Iterating the values for all the 5
processes
f(k)=0;
end

for i=1:5 //Iterating the values for all the
processes
for j=1:3 //Iterating the value for all the
processes
need(i,j)= M(i,j) - A(i,j); // Need is
calculated by subtacting the maximum and
availabe resources

end ;

end
y=0;
for k=1:5 // Iterating for all the 5 processes
for i=1:5
if (£ (1i)==0) then
flag = 0; //Flag value is set zero
for j=1:3 // Iterating for all the resources
if (need(i,j) > L(j)) then // If the
need value is more than the Awvailable
resources , the request cannot be
granted
flag=1; // Then the flag is set to 1
break; // The loop breaks here
end
end
if (flag==0) then // If the condition is
satisfied the next process is checked
similarly
ansl(z)=1i;
z=z+1;

for y=1:3
L(y)= L(y)+A(i,y); //If the condition is

48

42
43
44
45
46
47
48
49

50
o1
52
53
54
55
56
o7
58

U = W N

© o g O

10
11

satisfied the available valueis
updated by adding available wvalue and
the allocated resources of the
particular process

end
f(i)=1;
end
end
end
end
//For loop for displaying SAFE Sequence which

satisfies the safety
for i=1:5
ansl(i)=ans1(i)-1;

end
for i=1:5

mprintf (’ <P%d>,’ ,ans1(i));
end ;

endfunction

Deadlock Bankers Algorithm

Scilab code AP8 //Function for RoundRobin Algorithm
function [tat,wait_time]=roundrobin(qg,n,at,bt)

remain = n//Storing no of process in a variable
called n

wait_time=0;
tat=0;

quantum_time=q;
//disp (" Process Turnaround time

Waiting time”) ;

49

12
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27
28

29
30
31

32
33

34

35

36
37
38
39
40

time=0; //completion time is initially set to zero

for i=1:4
rt (i)=bt (i) ;
end ;

//running the processes for specified quantum
while remain™=0
for i=1:4

if rt(i)<=quantum_time & rt(i)>0 then //
executes if burst time is greater than 0
and lesser than quantum time
time=time+rt(i);// update completion
time
rt (i) =0;
flag=1;
elseif rt(i)>0 then
rt(i)=rt (i) -quantum_time;//update
burst time
time=time+quantum_time;
end ;
if rt(i)==0 & flag==1 then //executes if
burst time is equal to 0 and flag=1
remain = remain-1;
mprintf ("\n P%i\t\t\t %i\t\t\t %i’,i
,time-at (i) ,time-at (i)-bt(i));
tat=tat+time-at (i) ;//Turnaround time
= completion time—arrival time

wait_time = wait_time+time-at (i) -bt(
i);//Waiting time = turnaround—
burst time
flag=0;
end ;
if i==n-1
i=1;

elseif at(i)<=time then //executes when

50

41
42
43
44
45
46
47
48
49

50
o1

N O U = W

10

11
12

arrival time is lesser than/equal to
completion time

i=1;
else
i=1;
end ;
end ;
end ;
// display funcnction call
d = displayfunc(tat,wait_time); //Average
Displaying turn around time and Average waiting
time
endfunction

Round Robin Scheduling New

Scilab code AP 9
1 function [atat,awt] = displayfunc(tat,wait_time)
awt=wait_timex1.0/4; //Total wait_time/no of
processes gives average waiting time,
similarly avg turnaround time is calculated
atat=tat*1.0/4;

mprintf (7\n”)

disp (” Average Waiting Time using RR= "); //
Displaying Average waiting time
disp (awt) ;

disp (” Average Turnaround Time using RR= "); //
Displaying Average Turnaround time
disp(atat);
endfunction

Display Function of Round Robin

o1

W N

© 00 J O U

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32

Scilab code AP 10 // SJF Scheduling function

function [tat,wait_time]=shortestjobfirst (num,btime,
wtime ,tatime)
total=0; //total waiting time
total2=0;
n=num;
ptime=btime;
process=[1 2 3 4]; //process id
fd = %io(2);

for i=1:1:n-1 //sorting the processes in terms of
process times
for j=i+1:1:n
if (ptime (i) >ptime (j))
temp=ptime (i) ;
ptime(i) = ptime(j);
ptime(j) = temp;

temp = process(i);
process (i) = process(j);
process(j) = temp;
end
end
end

wtime (1) = 0;
for i=2:1:n
wtime (i) = wtime(i-1)+ptime(i-1); //wait time
of a process is sum of wait time of process
before it and process time of process before
it
total = total + wtime(i); //finding
total waiting time
end

tatime (1) = 0;
for i=1:1:n

52

33

34

35
36
37

38
39
40

41
42
43

44
45

w N

© 00 J O U

10
11
12

13
14

tatime (i)=ptime (i)+wtime (i) ; //turn around
time=burst time +wait time
total2=total2+tatime (i) ; //total
turn around time
end

avgl = total2/m; //finding
average time

for i=1:1:n
mfprintf (fd,’ P%d is %d’,process(i),tatime(i))

I

end

mfprintf (fd, '\n Average Turn—Around Time in SJF
%.217 ,avgl);
endfunction

SJF algorithm for Turn Around Time and Average Turn Around Time cal-
culation

Scilab code AP 11 // Round Robin Scheduling function

function [tat,wait_time]l=roundrobin (num,btime,wtime,
tatime)

b=0;

t=0;

n=num

q=5; //quantum time

wtime=zeros(1l,n); //waiting time

fd = %io(2);

rtime=btime // burst time

//For loop : running the processes for specified
quantum

for i=1:1:n //running the processes for 1

53

15
16
17
18

19
20

21
22
23
24
25
26
27

28
29

30
31
32
33
34
35
36
37

38
39
40

quantum
if (rtime (i) >=q)
for j=1:1:n
if (j==1)
rtime(i)=rtime (i) -q; //setting
the remaining time if it is the
process scheduled
else if(rtime (j)>0)
wtime (j)=wtime (j)+q; //
incrementing wait time if it
is not the process scheduled
end
end
end
else if(rtime (i) >0)
for j=1:1:n
if (j==1)
rtime (i) =0; //as the
remaining time is less than
quantum it will run the process
and end it
else if (rtime (j)>0)
wtime (j)=wtime (j)+rtime (i) ;
//incrementing wait time if
it is mnot the process

scheduled
end
end
end
end
end
end
for i=1:1:n
if (rtime (1) >0) //if remaining time is left
set flag
flag=1,;
end
end

o4

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74

while (flag==1) //if flag is set run the
above process again
flag=0;
for i=1:1:n
if (rtime (i) >=q)
for j=1:1:n
if (j==1)
rtime(i)=rtime (i) -q;
else if(rtime(j)>0)
wtime (j)=wtime (j)+q;
end
end
end
else if(rtime (i) >0)
for j=1:1:n
if (j==1)
rtime (i) =0;
else if(rtime(j)>0)
wtime (j)=wtime (j)+rtime(
i);
end
end
end
end
end
end
for i=1:1:n
if (rtime (i) >0)
flag=1;
end
end
end

//For loop : calculating turn around time for each
process
for i=1:1:n
tatime (i)=wtime (i)+btime (i) ; //By adding
waiting time and burst time

35

75
76
T
78
79
80
81
82
83
84
85
86
87

88
89

© 00 = & Ot

10
11
12

end

for i=1:1:n
b=b+wtime (i) ;
t=t+tatime (i) ;

end

for i=1:1:n
nfprintf (£4,’ P%d is %d’,i,tatime(i));
end

//displaying the Average Turn—Around Time in RR

mfprintf (fd, '\n Average Turn—Around Time in RR
%.2f7,t/n);
endfunction

Round Robin Scheduling for Turn Around Time and Average Turn Around
Time calculation

Scilab code AP 12 function [tat,wait_timel]=
firstcomefirstserve (num,btime,wtime,tatime) //
Function defintion of first come first serve

t1=0; // intializing time t1=0 for
total waiting time calculation

t2=0; // intializing time t2=0 for
total turn round time calculation

btime = bt; // assigning burst time

wtime = wt; // assigning waiting time

tatime = tat // assigning turn around time

n=num; // assigning number of process n
=4 here

fd = %io(2);
//For loop for calculating total turn around time

of each Process

56

13
14

15

16
17
18
19

20

21
22
23
24
25
26
27
28

29
30

W N

© 00 O U

for i=2:1:n
wtime (i)=btime (i-1)+wtime(i-1); //waiting time
will be sum of burst time of previous process
and waiting time of previous process
tl=tl+wtime (i) ; //calculating
total time
end

for i=1:1:n

tatime (i)=btime (i) +wtime (i) ; //turn around
time=burst time +wait time
t2=t2+tatime (i) ; //total turn

around time
end

for i=1:1:n
nfprintf (£4,’ P%d is %d’,i,tatime(i));
end

mfprintf (fd, '\n Average Turn—Around Time in FCFS
%.217,t2/n);

endfunction

FCFS Turn Around and Average Turn Around Calculation

Scilab code AP 13 // SJF Scheduling

function [tat,wait_time]=shortestjobfirst (num,btime,
wtime ,tatime)
total=0; //total waiting time
n=num;
ptime=btime;
process=[1 2 3 4]; //process id
fd = %io(2);

o7

10

11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29
30

31
32
33
34
35
36

37
38

for i=1:1:n-1 //sorting the processes in terms of
process times
for j=i+1:1:n
if (ptime (i) >ptime (j))
temp=ptime (i) ; // assigning Temporary
variable for sorting
ptime (i) = ptime(j);

ptime(j) = temp;
temp = process(i);
process (i) = process(j);
process(j) = temp;
end
end
end

wtime (1) = 0;
for i=2:1:n
wtime (i) = wtime(i-1)+ptime(i-1); //wait time
of a process is sum of wait time of process
before it and process time of process before

it
total = total + wtime(i); //finding
total waiting time
end
avg = total/m; //finding

average time
for i=1:1:n
mfprintf (fd,’ P%d is %d’,process(i),wtime(i));

end

nfprintf (fd, "\n Average Waiting Time in SJF is
%.217 ,avg) ;

endfunction

58

© 00 J O Ut = W

10
11
12

13
14
15
16

17
18

19
20
21
22
23
24
25

26

SJF for Turn Around Time and Average Turn Around Time calculation

Scilab code AP 14 // Round Robin Scheduling

function [tat,wait_time]l=roundrobin (num,btime,wtime,
tatime)
b=0;
t=0;
n=num
q=5; //quantum time
wtime=zeros(1,n); //waiting time
fd = %io(2);
rtime=btime
//running the processes for specified quantum
for i=1:1:n //running the processes for
quantum =5
if (rtime (i) >=q)
for j=1:1:mn
if (j==1)
rtime(i)=rtime (i) -q; //setting
the remaining time if it is the
process scheduled
else if(rtime(j)>0)
wtime (j)=wtime (j)+q; //
incrementing wait time if it
is not the process scheduled
end
end
end
else if(rtime (i) >0)
for j=1:1:n
if (j==1)
rtime (i) =0; //as the
remaining time is less than
quantum it will run the process
and end it
else if (rtime(j)>0)

59

27

28
29
30
31
32
33
34
35

36
37
38
39
40

41

42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58

wtime (j)=wtime (j)+rtime (i) ;
//incrementing wait time if
it is not the process
scheduled
end
end
end
end
end
end
for i=1:1:n
if (rtime (i) >0) //if remaining time is left
set flag
flag=1;
end
end
//Total waiting time , processes average waiting
time calculation
while (flag==1) //if flag is set run the
above process again
flag=0;
for i=1:1:n
if (rtime (i)>=q)
for j=1:1:n
if (j==1)
rtime(i)=rtime (i) -q;
else if(rtime (j)>0)
wtime (j)=wtime (j)+q;
end
end
end
else if (rtime (i) >0)
for j=1:1:mn
if (j==1)
rtime (i) =0;
else if(rtime(j)>0)
wtime (j)=wtime (j)+rtime (

60

99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

88
89

i); // Updation of
waiting time for each

process
end
end
end
end
end
end
for i=1:1:n
if (rtime (i) >0)
flag=1;
end
end
end
//displaying the waiting time in RR

for i=1:1:n
mfprintf (fd,’ P%d is %d’,i,wtime(i));
end

// Calculating Average Waiting Time
for i=1:1:n
b=b+wtime (i) ;
t=t+tatime (i) ;
end

//displaying the Average waiting time in RR

mfprintf (£d, "\n Average Waiting Time in Round
Robin is %.2f’,b/n);

endfunction

Round Robin Scheduling for Waiting and Average Waiting Time calculation

61

© 00 = O Ot

10
11
12

13
14

15

16
17
18
19
20
21
22
23
24

25
26

Scilab code AP 15 function [tat,wait_timel]=
firstcomefirstserve (num,btime,wtime,tatime) //
Function defintion of first come first serve

burst time

waiting time

turn around time
number of process n

//calculating

t1=0; // intializing time t1=0 for
total waiting time calculation
t2=0; // intializing time t2=0 for
total turn round time calculation
btime = bt; // assigning
wtime = wt; // assigning
tatime = tat // assigning
n=num; // assigning
=4 here
fd = %io(2);
//For loop for calculating total waiting time of
each Process
for i=2:1:n
wtime (i)=btime (i-1)+wtime(i-1); //waiting time
will be sum of burst time of previous
process and waiting time of previous process
tl=tl+wtime (1) ;
total waiting time
end
//displaying the waiting time of each Process
for i=1:1:n
mfprintf (fd,’ P%d is %d’,i,wtime(i));
end
mfprintf (fd, "\n Average Waiting Time in FCFS is

%.2f7,t1/n);

endfunction

FCFS Waiting and Average Waiting Calculation

62

w

© 00 J & Ot

10
11
12
13
14
15
16
17
18
19

20

21
22
23

24
25
26
27
28
29

Scilab code AP 16 //WINDOWS 10 64— BIT OS , Scilab and
toolbox versions 6.1.0.

// loading the necessary functions

function [tat,wait_time]=shorestjobfirst(pid,num,pt,
wt,tat) // Function defintion of first come
first serve

process=pid; //process id

n=num; // nmumber of processes

ptime = pt; //process time or burst time
tatime =tat; //turn around time

wtime = wt; //waiting time

fd = %io(2);

//Determining the number of processes and blocks

size_process = size(process);
size_process = size_process(2);
size_ptime = size(ptime);
size_ptime = size_ptime(2);

//marks the position of process with minimum burst
time in the specified range. This may be used to
rearrange the order of the processes to achieve
proper SJF scheduling ...

for i=1:1:n-1 //For loop for sorting the processes

in terms of process times
for j=i+1:1:n
if (ptime (i) >ptime(j))
temp=ptime (i) ; //temporary
variable used to enable efficient
swapping of wvalues
ptime(i) = ptime(j);
ptime(j) = temp;

temp = process(i);
process (i) = process(j);
process (j) = temp;

end

63

30 end

31

32 end

33

34 wtime (1) = 0;

35 //waiting time calculation

36 for i=2:1:n

37 wtime (i) = wtime(i-1)+ptime(i-1); //wait time
of a process is sum of wait time of process
before it and process time of process before

it

38 total = total + wtime(i); //finding
total waiting time

39 end

40

41 //total turnaround time calculation
42 for i=1:1:n

43 tatime (i)=ptime (i)+wtime (i) ; //turn around
time=burst time +wait time

44 total2=total2+tatime (i) ; //total
turn around time

45 end

46

47 avg = total/n; //finding

average time, average waiting time calculated by
dividing total waiting time by number of proceses

48 avgl = total2/n; //average
turn around time calculated by dividing total
turn around time by number of processes

49

50 display(process,size_process,wtime,tatime,avg,avgl);

//displaying the process and block

allocation by first fit array

51 endfunction

SJE New

64

ot

© 00 N O

10
11
12

13
14
15
16
17

18
19

20

21
22

23

24
25

Scilab code AP 117 //WINDOWS 10 64—BIT OS , Scilab and
toolbox wversions 6.1.0.

//Display Function: It prints all required details
such as Process no.

//Waiting time, Turn—Around time, Average Waiting
time and Average Turn—Around time

function display(process,size_process ,wtime,tatime,
avg,avgl)
//display of final values

for i=1:1:n
mfprintf (£d,’ P%d’,process (i)); //
Displaying sorted Process based on its
Shortest Job

end

disp (’Waiting time of each Process using SFJ’'); //
displaying the Waiting time
for i=1:1:n
mfprintf (fd,’ P%d is %d’,process(i),wtime(i));
end

disp ("Turn—Around time of each Process using SFJ’);
//displaying the Turn—Around time
for i=1:1:n
mfprintf (£d4,’ P%d is %d’,process(i),tatime(i))

I

end

mfprintf (fd, '\n Average Waiting Time using SJF is
%.21° ,avg) ; //displaying the Average Waiting
time
nfprintf (fd, "\n Average Turn—Around Time using SFJ
is %.2f’,avgl); //displaying the Average Turn—
Around time

endfunction

65

© 00 J & Ot

10
11
12

13

14

15

16

17

18

19
20

21

22
23

Display Function SJF new

Scilab code AP 18 function [tat,wait_timel=
firstcomefirstserve (num,btime,wtime,tatime) //
Function defintion of first come first serve

t1=0; // intializing time t1=0 for
total waiting time calculation
t2=0; // intializing time t2=0 for
total turn round time calculation
btime = bt; // assigning burst time
wtime = wt; // assigning waiting time
tatime = tat // assigning turn around time
n=num; // assigning number of process n
=4 here
fd = %io(2);
//For loop for calculating total waiting time of
each Process
for i=2:1:n
wtime (i)=btime (i-1)+wtime(i-1); //waiting time
will be sum of burst time of previous
process and waiting time of previous process
ti=tl+wtime (i) ; //calculating
total waiting time
end
//For loop for calculating total turn around time of
each Process
for i=1:1:n
tatime (i)=btime (i)+wtime (i) ; //turn around
time=burst time +wait time
t2=t2+tatime (i) ; //total turn
around time
end

66

24
25
26
27
28
29
30

31
32
33
34
35

36

37
38

//displaying the
for i=1:1:n

nfprintf (fd,’
end

waiting time of each Process

P%d is %d’,i,wtime(i));

disp ("Turn—Around Time of each Process’);
//displaying the final Turn—Around time of

each Process
for i=1:1:n
mfprintf (£d,’
end

nfprintf (fd, '\n
,t1/n);
waiting time

mfprintf (fd, "\n
217,t2/n);
Around time

endfunction

P%d is %d’,i,tatime(i));
Average Waiting Time is %.2f’
//displaying the Average

Average Turn—Around Time is %
//displaying the Average Turn

First Come First Serve CPU Scheduling

67

	
	First Come First Serve Non pre-emptive CPU Scheduling using Scilab
	Shortest Job First (SJF) Pre-emptive CPU Scheduling using Scilab
	Graphical Analysis with Waiting time & Average waiting time of CPU Scheduling Algorithms using Scilab
	Graphical Analysis with turn-around time & Average turnaround time of CPU Scheduling Algorithms using Scilab
	Round Robin (RR) Pre-emptive CPU Scheduling using Scilab
	Comparison of Various Partition Allocation Algorithms using Scilab
	Deadlock Avoidance using Scilab
	Process Synchronization Techniques using Scilab
	Memory Management using Scilab
	Page Replacement Algorithm using Scilab

