
Scilab Manual for
Operating Systems Lab
by Dr Maheswari R

Computer Engineering
VIT CHENNAI1

Solutions provided by
Dr Maheswari R

Computer Engineering
Vit Chennai

January 25, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 First Come First Serve Non pre-emptive CPU Scheduling
using Scilab 6

2 Shortest Job First (SJF) Pre-emptive CPU Scheduling us-
ing Scilab 8

3 Graphical Analysis with Waiting time & Average waiting
time of CPU Scheduling Algorithms using Scilab 10

4 Graphical Analysis with turn-around time & Average turnaround
time of CPU Scheduling Algorithms using Scilab 14

5 Round Robin (RR) Pre-emptive CPU Scheduling using Scilab 18

6 Comparison of Various Partition Allocation Algorithms us-
ing Scilab 20

7 Deadlock Avoidance using Scilab 26

8 Process Synchronization Techniques using Scilab 28

9 Memory Management using Scilab 30

10 Page Replacement Algorithm using Scilab 35

2

List of Experiments

Solution 1.0 First Come First Serve Non Preemptive CPU Schedul-
ing using Scilab 6

Solution 2.0 Shortest Job First 8
Solution 3.0 Graphical Analysis WT and AWT 10
Solution 4.0 Analysis TAT and ATAT 14
Solution 5.0 Round Robin Scheduling 18
Solution 6.0 Comparison of Various Partition Allocation Algo-

rithms using Scilab 20
Solution 7.0 Banker Algorithm Deadlock Avoidance using Scilab 26
Solution 8.0 Dekker Process Synchronization Techniques using

Scilab . 28
Solution 9.0 Memory Management using Scilab First Fit Best

Fit and Worst Fit 30
Solution 10.0 Optimal Page Replacement Algorithm using Scilab 35
AP 1 Optimal page replacement 40
AP 2 Worst Fit Memory Allocation 41
AP 3 First Fit Memory Allocation 42
AP 4 Display Function 43
AP 5 Best Fit Memory Allocation 44
AP 6 Dekker Algorithm 47
AP 7 Deadlock Bankers Algorithm 49
AP 8 Round Robin Scheduling New 51
AP 9 Display Function of Round Robin 51
AP 10 SJF algorithm for Turn Around Time and Average

Turn Around Time calculation 53
AP 11 Round Robin Scheduling for Turn Around Time

and Average Turn Around Time calculation . . . 56

3

AP 12 FCFS Turn Around and Average Turn Around Cal-
culation . 57

AP 13 SJF for Turn Around Time and Average Turn Around
Time calculation 58

AP 14 Round Robin Scheduling for Waiting and Average
Waiting Time calculation 61

AP 15 FCFS Waiting and Average Waiting Calculation . 62
AP 16 SJF New . 64
AP 17 Display Function SJF new 66
AP 18 First Come First Serve CPU Scheduling 67

4

List of Figures

3.1 Graphical Analysis WT and AWT 11

4.1 Analysis TAT and ATAT . 15

6.1 Comparison of Various Partition Allocation Algorithms using
Scilab . 21

5

Experiment: 1

First Come First Serve Non
pre-emptive CPU Scheduling
using Scilab

check Appendix AP 18 for dependency:

fcfs.sci

Scilab code Solution 1.0 First Come First Serve Non Preemptive CPU
Scheduling using Scilab

1 clear;

2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4

5 // Schedu l i n g i s a matter o f managing queues and to
d e c i d e which o f the p r o c e s s have to be execu t ed
next to a ch i e v e h igh e f f i c i e n c y l e v e l .

6 // F i r s t Come F i r s t Se rve (FCFS) Non Pre−empt ive :
Jobs a r e a lways exe cu t ed on a f i r s t −come , f i r s t −
s e r v e b a s i s .

6

7

8 // Func t i on s to be l oaded
9 exec(” f c f s . s c i ”);// f c f s . s c i dependency f i l e
10

11

12 num =4; //no o f p r o c e s s e s P1 , P2 , P3 , P4
13

14 bt=[10 2 8 6]; // Sample bu r s t t ime
15 wt=zeros(1,num); // wa i t i n g t ime
16 tat=zeros(1,num); // turn around t ime
17

18 disp(” F i r s t Come F i r s t Se rve (FCFS) Non Pre−
empt ive CPU Schedu l i n g ”);

19 disp(” Burst t ime o f the g i v en Pro c e s s P1=10 , P2
=2 , P3=8 , P4=6”);

20

21 disp(’ Wait ing Time o f each Pro c e s s ’); // d i s p l a y i n g
the wa i t i n g t ime

22

23 fcfs = firstcomefirstserve(num ,bt,wt,tat) //
Ca l l i n g f i r s t come f i r s t s e r v e f u n c t i o n

7

Experiment: 2

Shortest Job First (SJF)
Pre-emptive CPU Scheduling
using Scilab

check Appendix AP 17 for dependency:

display_sjf_new.sci

Scilab code Solution 2.0 Shortest Job First

1 clear;

2 clc;

3

4 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

5

6 //SJF s c h e du l i n g i s employed when s e v e r a l p r o c e s s e s
a r r i v e a lmost at the same time , so as to avo id
c o n f l i c t , e n su r e maximum CPU u t i l i z a t i o n with
minimum wa i t i n g time , turnaround t ime to min imize
s t a r v a t i o n . The a lgorthm can be used f o r both

8

c a s e s i . e . , when a r r i v a l t ime i s the same f o r a l l
o r most p r o c e s s e s and when t h e r e a r e s l i g h t l y

d i f f e r e n t a r r i v a l t imes . In c a s e o f same a r r i v a l
time , the v a l u e s amy be s e t to 0 by d e f a u l t by
the u s e r

7

8 // l o a d i n g the n e c e s s a r y f u n c t i o n s
9

10 exec(” s j f n ew . s c i ”);
11 exec(” d i s p l a y s j f n e w . s c i ”);
12

13 num =4; //no o f p r o c e s s e s P1 , P2 , P3 , P4
14 pt=[10 2 8 6]; // p r o c e s s t ime or bu r s t t ime
15 pid =[1 2 3 4]; // p r o c e s s i d
16 wt=zeros(1,num); // wa i t i n g t ime
17 tat=zeros(1,num); // turn around t ime
18 total =0; // t o t a l wa i t i n g t ime
19 total2 =0; // t o t a l turn around t ime
20

21 disp(” Sh o r t e s t Job F i r s t (SJF) Pre−empt ive CPU
Schedu l i n g ”);

22 disp(” Burst t ime o f the g i v en Pro c e s s P1=10 , P2=2 ,
P3=8 , P4=6”);

23

24

25 disp(” So r t ed Pro c e s s based on i t s S h o r t e s t Job”);
26

27 sjf = shorestjobfirst(pid ,num ,pt,wt,tat); //
Ca l l i n g s h o r e s t j ob f i r s t f u n c t i o n

check Appendix AP 16 for dependency:

sjf_new.sci

9

Experiment: 3

Graphical Analysis with
Waiting time & Average
waiting time of CPU
Scheduling Algorithms using
Scilab

check Appendix AP 15 for dependency:

fcfs_wt_awt.sci

Scilab code Solution 3.0 Graphical Analysis WT and AWT

1 clear;

2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4

10

Figure 3.1: Graphical Analysis WT and AWT

11

5 // Schedu l i n g a l g o r i t hms d e a l s to min imize queu ing
de l ay and to op t im i z e pe r f o rmance o f queu ing
env i ronment . In t h i s a n a l y s i s , some common
s c h e du l i n g a l g o r i t hms l i k e F i r s t Come F i r s t Se rve
(FCFS) , S h o r t e s t Job F i r s t (SJF) and Round Robin
(RR) Schedu l i n g a r e s t u d i e d and r ev i ewed on the

b a s i s o f t h e i r work ing s t r a t e g y
6

7

8 // Func t i on s to be l oaded
9 exec(” f c f s w t aw t . s c i ”); // f c f s w t aw t . s c i

dependency f i l e
10 exec(” s j f w t aw t . s c i ”); // s j f w t aw t . s c i dependency

f i l e
11 exec(” r r w t awt . s c i ”); // r r w t awt . s c i dependency

f i l e
12

13 num =4; //no o f p r o c e s s e s P1 , P2 , P3 , P4
14 bt=[10 2 8 6]; // Sample bu r s t t ime
15 wt=zeros(1,num); // wa i t i n g t ime
16 tat=zeros(1,num); // turn around t ime
17

18 disp(” Graph i c a l Ana ly s i s− Wait ing Time vs Average
Wait ing Time o f S ch edu l i n g Algor i thms ”);

19

20 disp(” Burst t ime o f the g i v en Pro c e s s P1=10 , P2=2 ,
P3=8 , P4=6”);

21

22 disp(’ Wait ing Time o f each Pro c e s s i n FCFS ’); //
d i s p l a y i n g the wa i t i n g t ime in FCFS

23

24 fcfs = firstcomefirstserve(num ,bt,wt,tat) //
Ca l l i n g f i r s t come f i r s t s e r v e f u n c t i o n

25

26

27 disp(’ Wait ing t ime o f each Pro c e s s i n SJF ’); //
d i s p l a y i n g the Wait ing t ime o f each Pro c e s s i n
SJF

12

28 sjf = shortestjobfirst(num ,bt ,wt,tat) // Ca l l i n g
s h o r t e s t j ob f i r s t f u n c t i o n

29

30

31 disp(’ Wait ing Time o f each Pro c e s s i n Round Robin ’);
// d i s p l a y i n g the Wa i t i t i n g Time o f each Pro c e s s

i n Round Robin
32

33 rr= roundrobin(num ,bt,wt,tat) // Ca l l i n g
Round Robin f u n c t i o n

34

35 /* constructing a rows for graphical representation */

36

37 scf (1);

38

39 y = [0 ,10 ,20 ,30 ,40];

40

41 x=[1,2,3,4,5]

42 avg =

[0 ,16 ,12;10 ,0 ,5;12 ,8 ,15;20 ,2 ,15;10.5 ,6.5 ,11.75];

43

44 /* Matrix avg is set of values obtained from waiting

time for each algorithm FCFS , SJF , RR

respectively */

45

46 xtitle(’ G raph i c a l Ana l y s i s : Wait ing Time Vs Average
Wait ing Time ’ , ’ P r o c e s s ’ , ’ Wait ing t ime ’);

47

48 bar(x,avg);

49

50 legend(”FCFS”,”SJF”,”RR”);

check Appendix AP 14 for dependency:

rr_wt_awt.sci

check Appendix AP 13 for dependency:

sjf_wt_awt.sci

13

Experiment: 4

Graphical Analysis with
turn-around time & Average
turnaround time of CPU
Scheduling Algorithms using
Scilab

check Appendix AP 12 for dependency:

fcfs_tat_atat.sci

Scilab code Solution 4.0 Analysis TAT and ATAT

1 clear;

2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4

14

Figure 4.1: Analysis TAT and ATAT

15

5 // In t h i s a n a l y s i s , some common s c h e du l i n g
a l g o r i t hms l i k e F i r s t Come F i r s t Se rve (FCFS) ,
S h o r t e s t Job F i r s t (SJF) and Round Robin (RR)
Schedu l i n g a r e s t ud i e d and r ev i ewed on the b a s i s
o f t h e i r Turn Around Time and Average Turn Around
Time

6

7

8 // Func t i on s to be l oaded
9 exec(” f c f s t a t a t a t . s c i ”); // f c f s t a t a t a t . s c i

dependency f i l e f o r FCFS Schedu l i n g
10 exec(” s j f t a t a t a t . s c i ”); // s j f t a t a t a t . s c i

dependency f i l e f o r SJF Schedu l i n g
11 exec(” r r t a t a t a t . s c i ”); // r r t a t a t a t . s c i

dependency f i l e f o r RR Schedu l i n g
12

13 num =4; //no o f p r o c e s s e s P1 , P2 , P3 , P4
14 bt=[10 2 8 6]; // Sample bu r s t t ime
15 wt=zeros(1,num); // wa i t i n g t ime
16 tat=zeros(1,num); // turn around t ime
17

18 disp(” Graph i c a l Ana l y s i s with Turn−Around Time &
Average Turn−Around Time o f CPU us i ng Sc iLab ”);

19 disp(” Burst t ime o f the g i v en Pro c e s s P1=10 , P2=2 ,
P3=8 , P4=6”);

20

21 disp(’ Turn Around Time o f each Pro c e s s i n FCFS ’); //
d i s p l a y i n g the Turn Around t ime in FCFS

22

23 fcfs = firstcomefirstserve(num ,bt,wt,tat) //
Ca l l i n g f i r s t come f i r s t s e r v e f u n c t i o n

24

25

26 disp(’ Turn Around Time o f each Pro c e s s i n SJF ’); //
d i s p l a y i n g the Turn Around t ime o f each Pro c e s s
i n SJF

27 sjf = shortestjobfirst(num ,bt ,wt,tat) // Ca l l i n g
s h o r t e s t j ob f i r s t f u n c t i o n

16

28

29

30 disp(’ Turn Around Time o f each Pro c e s s i n Round
Robin ’); // d i s p l a y i n g the Turn Around Time o f
each Pro c e s s i n Round Robin

31

32 rr= roundrobin(num ,bt,wt,tat) // Ca l l i n g
Round Robin f u n c t i o n

33

34 /* constructing a rows for graphical representation */

35

36 scf (1);

37

38 y = [0 ,10 ,20 ,30 ,40];

39

40 x=[1,2,3,4,5]

41 avg =

[10 ,26 ,22;12 ,2 ,7;20 ,16 ,23;26 ,8 ,21;17 ,13 ,18.25];

42

43 /* Matrix avg is set of values obtained from Turn

Around time for each algorithm FCFS , SJF , RR

respectively */

44

45 xtitle(’ G raph i c a l Ana l y s i s with Turn−Around Time &
Average Turn−Around Time o f CPU us i ng Sc iLab ’ ,”
Pro c e s s ”,”Turn Around Time”);

46

47

48 bar(x,avg);

49

50 legend(”FCFS”,”SJF”,”RR”);

check Appendix AP 11 for dependency:

rr_tat_atat.sci

check Appendix AP 10 for dependency:

sjf_tat_atat.sci

17

Experiment: 5

Round Robin (RR)
Pre-emptive CPU Scheduling
using Scilab

check Appendix AP 9 for dependency:

display_rr.sci

Scilab code Solution 5.0 Round Robin Scheduling

1 clear;

2 clc;

3

4 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

5

6 // Round Robin (RR) i s a pre−empt ive s c h e du l i n g
a l g o r i t hm . The CPU i s s h i f t e d to the next p r o c e s s
a f t e r f i x e d i n t e r v a l time , which i s c a l l e d t ime

quantum/ t ime s l i c e .
7

18

8 // Func t i on s to be l oaded
9 exec(” roundrob in new . s c i ”);// dependency f i l e

roundrob in new . s c i
10 exec(” d i s p l a y r r . s c i ”);// dependency f i l e f o r d i s p l a y

f u n c t i o n
11

12 disp(” ROUND ROBIN SCHEDULING
”)

13

14 at = [0 1 2 3]; // De f i n i n g sample A r r i v a l Time
15 bt = [9 5 3 4]; // De f i n i n g sample Burst Time
16 n=size(at);

17

18 disp(” Sample Quantum Time= 5 ”)
19 mprintf(”\n”)
20 q = input(” Enter Quantum Time : ”);
21 disp(” Pro c e s s Turnaround t ime

Wait ing t ime ”);
22

23 // Ca l l i n g Round Robin f u n c t i o n
24 rr = roundrobin(q,n,at,bt);

25

26 // d i s p (” P ro c e s s Turnaround t ime
Wait ing t ime ”) ;

check Appendix AP 8 for dependency:

roundrobin_new.sci

19

Experiment: 6

Comparison of Various
Partition Allocation
Algorithms using Scilab

check Appendix AP 5 for dependency:

best_fit_func.sci

check Appendix AP 4 for dependency:

display_func.sci

check Appendix AP 3 for dependency:

first_fit_func.sci

Scilab code Solution 6.0 Comparison of Various Partition Allocation Al-
gorithms using Scilab

1 clear;

20

Figure 6.1: Comparison of Various Partition Allocation Algorithms using
Scilab

21

2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4

5 // This expe r iment i s compare the v a r i o u s p a r t i t i o n
a l l o c a t i o n a l g o r i t hms used by the op e r a t i n g
system f o r memory a l l o c a t i o n

6 // 1 . F i r s t −F i t Memory A l l o c a t i o n 2 . Best−F i t
Memory A l l o c a t i o n 3 . Worst−F i t Memory A l l o c a t i o n

7

8 // l o a d i n g a l l the n e c e s s a r y f u n c t i o n s
9 exec(” f i r s t f i t f u n c . s c i ”);
10 exec(” b e s t f i t f u n c . s c i ”);
11 exec(” w o r s t f i t f u n c . s c i ”);
12 exec(” d i s p l a y f u n c . s c i ”);
13

14 // Example problem
15 p = [90 20 50 200]; // De f i n i n g sample P ro c e s s S i z e
16 b = [50 100 90 200 60]; // De f i n i n g sample Block S i z e
17

18

19 // Determin ing the number o f p r o c e s s e s and b l o c k s
20

21 size_process = size(p); // S i z e o f the p r o c e s s
a r r ay i s c a l c u l a t e d u s i n g s i z e () f u n c t i o n

22 size_process = size_process (2);

23

24 size_block = size(b); // S i z e o f the b l o ck
a r r ay i s c a l c u l a t e d u s i n g s i z e () f u n c t i o n

25 size_block = size_block (2);

26

27 /* calling the function , defined in first fit.sci ,

for first fit allocation */

28 ff_allot = firstFit(p,b,size_process ,size_block)

29

30 /* calling the function , defined in best fit.sci , for

best fit allocation */

31 bf_allot = bestFit(p, b, size_process , size_block)

22

32

33 /* calling the function , defined in worst fit.sci ,

for worst fit allocation */

34 wf_allot = worstFit(p,b,size_process ,size_block);

35

36

37 ff_allotsize = zeros(1, size_process); //
f f a l l o t s i z e − s i z e o f the s e l e c t e d b l o c k s f o r
f i r s t f i t

38 bf_allotsize = zeros(1, size_process); //
b f a l l o t s i z e − s i z e o f the s e l e c t e d b l o c k s f o r
b e s t f i t

39 wf_allotsize = zeros(1, size_process); //
w f a l l o t s i z e − s i z e o f the s e l e c t e d b l o c k s f o r
wors t f i t

40

41 // s t o r i n g the a l l o c a t e d b l o ck s i z e f o r each p r o c e s s
a c c o r d i n g to the r e s p e c t i v e f i t s

42

43 for i=1: size_process

44 if ff_allot(i)~=0 then //
ch e ck i ng i f any b l o ck i s s e l e c t e d

45 ff_allotsize(i) = b(ff_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d b l o ck
f o r f i r s t f i t

46 else

47 ff_allotsize(i) = 0 //
s t o r e s i z e as 0 i f no b l o ck i s s e l e c t e d

48 end ,

49

50 if bf_allot(i)~=0 then //
ch e ck i ng i f any b l o ck i s s e l e c t e d

51 bf_allotsize(i) = b(bf_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d b l o ck
f o r b e s t f i t

52 else

53 bf_allotsize(i) = 0 //
s t o r e s i z e as 0 i f no b l o ck i s s e l e c t e d

23

54 end ,

55

56 if wf_allot(i)~=0 then //
ch e ck i ng i f any b l o ck i s s e l e c t e d

57 wf_allotsize(i) = b(wf_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d b l o ck
f o r wors t f i t

58 else

59 wf_allotsize(i) = 0; //
s t o r e s i z e as 0 i f no b l o ck i s s e l e c t e d

60 end ,

61 end

62

63

64 // c o n s t r u c t i n g a matr ix (y) f o r g r a p h i c a l
r e p r e s e n t a t i o n o f f i r s t f i t , b e s t f i t and wors t
f i t

65

66 y= zeros(size_process ,3);

67

68 y(:,1) = ff_allotsize; // F i r s t f i t a l l o tmen t
s i z e

69 y(:,2) = bf_allotsize; // Best f i t a l l o tmen t
s i z e

70 y(:,3) = wf_allotsize; // Worst f i t a l l o tmen t
s i z e

71

72 bar(y) // p l o t t i n g a bar graph
73

74 xtitle(”Comparison o f Var i ous P a r t i t i o n A l l o c a t i o n
Algor i thm ”,” Pro c e s s Number”,”Block S i z e ”);

75 legend(” F i r s t F i t ” , ” Best F i t ”, ”Worst F i t ”);

76

77

78 // p r i n t i n g f i r s t f i t , b e s t f i t and wors t f i t a r r ay
79

80 mprintf(”Comparison o f Var i ous P a r t i t i o n A l l o c a t i o n
Algor i thms u s i n g S c i l a b \n\n”) // d i s p l a y i n g the

24

t i t l e o f expe r iment
81 mprintf(”Ex : P r o c e s s s i z e P1=90 , P2=20 , P3=50 , P4

=200”); // d i s p l a y i n g
the sample P ro c e s s s i z e c o n s i d e r e d f o r the o f
expe r iment

82 mprintf(”\n Block or ho l e s i z e B1= 50 , B2= 100 ,
B3=90 , B4=200\n”); // d i s p l a y i n g
the sample Block s i z e c o n s i d e r e d f o r the o f
expe r iment

83

84 mprintf(”\nFIRST FIT : \ n”)
85 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no . Block

s i z e \n”)
86 display(ff_allot ,ff_allotsize ,size_process ,p)

// d i s p l a y i n g the p r o c e s s and b l o ck
a l l o c a t i o n by f i r s t f i t a r r ay

87

88 mprintf(”\nBEST FIT : \ n”)
89 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no . Block

s i z e \n”)
90 display(bf_allot ,bf_allotsize ,size_process ,p)

// d i s p l a y i n g the p r o c e s s and b l o ck
a l l o c a t i o n by b e s t f i t a r r ay

91

92

93 mprintf(”\nWORST FIT : \ n”)
94 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no . Block

s i z e \n”)
95 display(wf_allot ,wf_allotsize ,size_process ,p)

// d i s p l a y i n g the p r o c e s s and b l o ck
a l l o c a t i o n by wors t f i t a r r ay

check Appendix AP 2 for dependency:

worst_fit_func.sci

25

Experiment: 7

Deadlock Avoidance using
Scilab

check Appendix AP 7 for dependency:

Deadlock.sci

Scilab code Solution 7.0 Banker Algorithm Deadlock Avoidance using Scilab

1 clear;

2 clc;

3

4 //The b a n k e r s a l g o r i t hm i s a r e s o u r c e a l l o c a t i o n
and dead l o ck avo idance a l g o r i t hm tha t t e s t s f o r
s a f e t y by s imu l a t i n g the a l l o c a t i o n f o r
p r ede t e rm ined maximum p o s s i b l e amounts o f a l l
r e s o u r c e s

5

6 // Load dependency f i l e
7 exec(”Deadlock . s c i ”);
8

26

9 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

10 close;

11 n=5; // Number o f p r o c e s s e s
12 m=3; // Number o f r e s o u r c e s
13

14

15 disp(” B a n k e r s Algor i thm f o r Deadlock Avoidance ”)
16 mprintf(”\ nCons ide r Number o f P r o c e s s e s N=5 ,Number

o f r e s o u r c e s M=3\n”); // Number o f p r o c e s s e s and
Number o f r e s o u r c e s

17

18 mprintf(”\n A l l o c a t i o n a r e [] 0 1 0 ; 2 0 0 ; 3 0 2 ; 2 1
2 ; 0 0 2] ”); // Giv ing the p r o c e s s a l l o c a t i o n
v a l u e s

19 mprintf(”\nM=[7 5 3 ; 3 2 2 ; 9 0 2 ; 2 2 2 ; 4 3 3]\ n”); //
Giv ing the maximum va l u e s

20

21 disp(’ Fo l l ow ing i s the SAFE Sequence s a t i s f i e s the
s a f e t y r equ i r emen t : ’); // Disp command p r i n t s the
s a f e s equence

22

23 Deadlock(n,m) // Funct ion c a l l o f Deadlock −
Bankers Algor i thm

27

Experiment: 8

Process Synchronization
Techniques using Scilab

check Appendix AP 6 for dependency:

Process_Synch.sci

Scilab code Solution 8.0 Dekker Process Synchronization Techniques us-
ing Scilab

1 // //DEKKER’ S ALGORITHM////
2

3 clear;

4 clc;

5 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

6

7 exec(” Proc e s s Synch . s c i ”);
8

9

10 //Dekker ’ s a l g o r i t hm gua r an t e e s mutual e x c l u s i o n ,
f reedom from dead lock , and freedom from
s t a r v a t i o n .

28

11 // In t h i s a l go r i thm , the p o s i t i o n o f each p r o c e s s i s
i n d i c a t e d with the v a r i a b l e s turn and f l a g .

12

13

14 // INITIALIZING THE VALUES
15 c1=1,c2=1,turn =1;

16 count0=0,count1=0,count =0;

17 i=0;

18 // Dea f u l t v a l u e s
19 limit =10; // Limit o f CS
20 a=1,b=1; //Time taken i n CS by both p r o c e s s
21

22

23 disp(” Pro c e s s S yn ch r on i z a t i o n u s i n g Dekkers
Algor i thm in S c i l a b ”);

24 mprintf(”\ nInput Ex : Time in CS f o r P1 i s 2 , P2 i s
3 , Tota l Time i s 9\n ”)

25 //INSTRUCTIONS TO PROCEED :
26 mprintf(” 1) P ro c e s s 1 e n t e r s \n”);
27 mprintf(” 2) P ro c e s s 2 e n t e r s \n”);
28 mprintf(” 3) Both p r o c e s s e n t e r s \n”);
29 mprintf(” 4) Ex i t \n”);
30 mprintf(”\n Enter t o t a l t ime r e qu i e d by Pro c e s s 1 i n

CS : ”)
31 a = input(” ”)
32 mprintf(” Enter t o t a l t ime r e qu i e d by Pro c e s s 2 i n

CS : ”)
33 b = input(” ”)
34 mprintf(” Enter t o t a l t ime l i m i t o f CS : ”)
35 limit = input(” ”)
36 //Psyn (a , b , l i m i t) ;
37 Psyn(a,b,limit)

38 //FUNCTION TO IDENTIFY WHICH PROCESS ENTERS NOW

29

Experiment: 9

Memory Management using
Scilab

check Appendix AP 5 for dependency:

best_fit_func.sci

check Appendix AP 4 for dependency:

display_func.sci

check Appendix AP 3 for dependency:

first_fit_func.sci

Scilab code Solution 9.0 Memory Management using Scilab First Fit Best
Fit and Worst Fit

1 clear;

30

2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4 //The memory to the p r o c e s s o r w i l l be a l l o c a t e d i n
s e v e r a l b l o c k s o f memory , i n o rd e r to make a
p e r f e c t l y o r g an i z e d a l l o c a t i o n between the memory
b l o c k s and p ro c e s s , t h r e e d i f f e r e n t p a r t i t i o n

and a l l o c a t i o n a l g o r i t hms a r e used 1 . F i r s t −F i t
Memory A l l o c a t i o n 2 . Best−F i t Memory A l l o c a t i o n
3 . Worst−F i t Memory A l l o c a t i o n

5

6 /* loading all the necessary functions */

7 exec(” f i r s t f i t f u n c . s c i ”);
8 exec(” b e s t f i t f u n c . s c i ”);
9 exec(” w o r s t f i t f u n c . s c i ”);
10 exec(” d i s p l a y f u n c . s c i ”);
11

12 mprintf(”Memory Management F i r s t f i t , Best F i t and
Worst F i t A l l o c a t i o n \n ”);

13 mprintf(”
−−−\
n ”);

14

15 mprintf(”Ex : P r o c e s s s i z e P1=212 , P2=417 , P3=112 , P4
=426”);

16 mprintf(”\n Block or ho l e s i z e B1= 100 , B2= 500 ,
B3=200 , B4=300 , B5=600\n”);

17

18 /* Example problem */

19 p = [212 ,417 ,112 ,426]; // p r o c e s s s i z e
20 b = [100 ,500 ,200 ,300 ,600]; // b l o ck or ho l e s i z e
21

22 disp(” S e l e c t the Option : ”);
23 mprintf(” 1−F i r s t F i t \n”);
24 mprintf(” 2−Best F i t \n”)
25 mprintf(” 3−Worst F i t \n”);
26

27 /*

31

28 Determining the number of processes and blocks

29 */

30 size_process = size(p);

31 size_process = size_process (2);

32

33 size_block = size(b);

34 size_block = size_block (2);

35

36 n1=input(””);
37 if(n1==1) then

38 // f i r s t f i t () ;
39 /* calling the function , defined in first fit.sci ,

for first fit allocation */

40 ff_allot = firstFit(p,b,size_process ,size_block)

41 end

42 if(n1==2) then

43 /* calling the function , defined in best fit.sci , for

best fit allocation */

44 bf_allot = bestFit(p, b, size_process ,

size_block)

45

46 end

47 if(n1==3) then

48 // w o r s t f i t () ;
49 /* calling the function , defined in worst fit.sci ,

for worst fit allocation */

50 wf_allot = worstFit(p,b,size_process ,size_block);

51

52 end

53

54 /*

55 ff_allotsize - size of the selected blocks for first

fit

56 bf_allotsize - size of the selected blocks for best

fit

57 wf_allotsize - size of the selected blocks for worst

fit

58 */

32

59 ff_allotsize = zeros(1, size_process);

60 bf_allotsize = zeros(1, size_process);

61 wf_allotsize = zeros(1, size_process);

62

63 /* storing the allocated block size for each process

according to the respective fits */

64 for i=1: size_process

65 if(n1==1) then

66

67 if ff_allot(i)~=0 then // ch e ck i ng i f any
b l o ck i s s e l e c t e d

68 ff_allotsize(i) = b(ff_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d
b l o ck f o r f i r s t f i t

69 else

70 ff_allotsize(i) = 0 // s t o r e s i z e as 0
i f no b l o ck i s s e l e c t e d

71 end ,

72 end

73

74 if(n1==2) then

75 if bf_allot(i)~=0 then // ch e ck i ng i f any
b l o ck i s s e l e c t e d

76 bf_allotsize(i) = b(bf_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d
b l o ck f o r b e s t f i t

77 else

78 bf_allotsize(i) = 0 // s t o r e s i z e as 0
i f no b l o ck i s s e l e c t e d

79 end ,

80 end

81 if(n1==3) then

82 if wf_allot(i)~=0 then // ch e ck i ng i f any
b l o ck i s s e l e c t e d

83 wf_allotsize(i) = b(wf_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d
b l o ck f o r wors t f i t

84 else

33

85 wf_allotsize(i) = 0; // s t o r e s i z e as 0
i f no b l o ck i s s e l e c t e d

86 end ,

87 end

88 end

89 /*

90 printing first fit , best fit and worst fit array

91 */

92 if(n1==1) then

93 mprintf(”\nFIRST FIT : \ n”)
94 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no . Block

s i z e \n”)
95 display(ff_allot ,ff_allotsize ,size_process ,p)

96 end

97 if(n1==2) then

98

99 mprintf(”\nBEST FIT : \ n”)
100 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no .

Block s i z e \n”)
101 display(bf_allot ,bf_allotsize ,size_process ,p)

102 end

103 if(n1==3) then

104

105 mprintf(”\nWORST FIT : \ n”)
106 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no .

Block s i z e \n”)
107 display(wf_allot ,wf_allotsize ,size_process ,p)

108 end

check Appendix AP 2 for dependency:

worst_fit_func.sci

34

Experiment: 10

Page Replacement Algorithm
using Scilab

check Appendix AP 1 for dependency:

PageReplacement.sci

Scilab code Solution 10.0 Optimal Page Replacement Algorithm using
Scilab

1 clear;

2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4

5 // In Optimal page r ep l a c ement a l go r i thm , the page
tha t w i l l not be used f o r the l o n g e s t p e r i o d o f

t ime i s r e p l a c e d to make space f o r the r e qu e s t e d
page .

6

7 // Func t i on s to be l oaded

35

8 exec(”PageReplacement . s c i ”); // PageReplacement . s c i
dependency f i l e

9

10 mprintf(” Optimal Page Replacement Algor i thm us i ng
S c i l a b \n”)

11

12 mprintf(” Sample Input : No . o f f r ames =4 , No . Page=13
”)

13 mprintf(”\n”)
14 mprintf(”Sample Page Re f e r en c e S t r i n g

7 , 0 , 1 , 2 , 0 , 3 , 0 , 4 , 2 , 3 , 0 , 3 , 2 ”)
15 frames=cell (10); //Read Frames
16 pages=cell (30); //Read Pages
17 temp=cell (10); //Read temp
18 noOfFrames =0;

19 noOfPages =0;

20

21 mprintf(”\n”)
22 mprintf(’ Enter No Of Frames ’); //Write to command

window
23 mprintf(”\n”)
24 noOfFrames=input(””); // Giv ing the no . o f . Frames

Value
25

26 mprintf(’ Enter No Of Pages ’); //Write to command
window

27 noOfPages=input(””); // Giv ing the no . o f . Pages
Value

28 flag1 =0; // S e t t i n g a Flag
29 flag2 =0; // S e t t i n g a Flag
30 flag3 =0; // S e t t i n g a Flag
31 faults =0; //Read f a u l t s
32 maximum =0; // S e t t i n g i t to a marker va l u e
33

34 mprintf(”\n”)
35 mprintf(’ Enter Page Re f e r en c e Values ’); //Write to

command window
36

36

37 for n=1: noOfPages // Giv ing the f i r s t r e f e r e n c e va lu e
i n f i r s t f rame

38 // mpr in t f (” Enter Page r e f e r e n c e %d” , n)
39 pages{n}=input(””); // P r i n t i n g the va lu e i n

page
40 end

41

42 pagereplacement(noOfFrames ,noOfPages ,pages) //
Ca l l i n g page r ep l a c ement f u n c t i o n

37

Appendix

Scilab code AP 1
1 function []= pagereplacement(noOfFrames ,noOfPages

,pages) // //Page r ep l a c ement f u n c t i o n
2

3 for n=1: noOfFrames // Giv ing the no . o f Frames
4 frames{n}=-1;

5 end

6

7 for i=1: noOfPages // No . o f Pages
8 flag1 =0;

9 flag2 =0;

10 for j=1: noOfFrames

11 if(frames{j}== pages{i})

12 flag1 =1;

13 flag2 =1;

14 break;

15 end

16 end

17 if(flag1 ==0)

18 for j=1: noOfFrames

19 if(frames{j}==-1)

20 faults=faults +1;

21 frames{j}= pages{i};

22 flag2 =1;

23 break;

24 end

25 end

38

26 end

27 if(flag2 ==0)

28 flag3 =0;

29 for j=1: noOfFrames

30 temp{j}=-1;

31 for k=i+1: noOfPages

32 if(frames{j}== pages{k}) //Check the
f rames and pages a r e f i l l e d

33 temp{j}=k

34 break;

35 end

36 end

37 end

38

39 // For l oop f o r i d e n t i f y i n g page f a u l t s
40 for j=1: noOfFrames

41 if(temp{j}==-1)

42 pos=j;

43 flag3 =1;

44 break;

45 end

46 end

47 if(flag3 ==0)

48 maximum=temp {0};

49 pos =0;

50 for j=1: noOfFrames

51 if(temp{j}>maximum)

52 maximum=temp{j}; //Check the
va lu e i s l ong p e r i o d use or
not

53 pos=j;

54 end

55 end

56 end

57 frames{pos}=pages{i}

58 faults=faults +1; //Check next va lu e i s
Equal or to change the p o s i t i o n

59 end

39

60 end

61 faults=faults -1;

62 mprintf(”No Of Page Fa l u t s %d\n”,faults); //Write
Page Fau l t s to command window

63

64 endfunction

Optimal page replacement

Scilab code AP 2
1 //Worst−F i t Memory A l l o c a t i o n , the o p e r a t i n g

system s e a r c h e s the e n t i r e l i s t and a l l o c a t e s the
l a r g e s t a v a i l a b l e h o l e to the p r o c e s s .

2 // I f a l a r g e p r o c e s s comes at a l a t e r s tage , then
memory may not have space to accommodate i t .

3

4 function [wf_allot]= worstFit(p,b,size_process ,

size_block)

5

6 // De c l a r i n g wors t f i t f l a g a r r ay (w f f l a g) which i s
used f o r ma in t a i n i ng the s t a t u s o f each b l o ck (
f r e e or busy)

7

8 wf_allot = zeros(1, size_process);

// De c l a r i n g wors t f i t a r r ay (w f a l l o t)
9 wf_flag = zeros(1, size_block);

10

11 // For l oop f o r a l l o c a t i n g b l o c k s a c c o r d i n g to wors t
f i t

12

13 for i=1: size_process

14 k = -1; // k − i ndex
p o s i t i o n o f the l a r g e s t b l o ck which can
accommodate a p r o c e s s , i n i t i a l l y s e t to
−1

15 for j=1: size_block

16 if p(i)<=b(j) && wf_flag(j) == 0 then //
i f p r o c e s s s i z e i s l e s s than b l o ck

40

s i z e and b l o ck i s f r e e
17 if k==-1 then

18 k = j; // update k with
index p o s i t i o i n o f the b l o ck

19 elseif(b(k)<b(j)) // i f t h e r e i s a
l a r g e r b l o ck which can

accommodate the p r o c e s s
20 k = j; // update k with the

index p o s i t i o n o f the l a r g e r
b l o ck

21 end ,

22 end ,

23 end

24 if(k==-1)

25 wf_allot(i)=0; // i f no b l o ck can
accomodate the p r o c e s s , s e t a l l o t t e d
b l o ck number as 0

26 else

27 wf_allot(i) = k; // s t o r e the s e l e c t e d
index i n the wors t f i t a r r ay i n the
index p o s i t i o n i (p r o c e s s number)

28 wf_flag(k) = 1; // s e t the s t a t u s o f the
s e l e c t e d b l o ck as busy

29 end ,

30 end

31 endfunction

Worst Fit Memory Allocation

Scilab code AP 31 // F i r s t −F i t Memory A l l o c a t i o n
a l g o r i t hm scan s the memory and whenever i t f i n d s
the f i r s t b i g enough ho l e to s t o r e a p r o c e s s ,

2 // i t s t o p s s c ann ing and l o ad s the p r o c e s s i n t o tha t
ho l e / b l o ck .

3

4 function [ff_allot]= firstFit(p,b,size_process ,

size_block)

5

41

6

7 // De c l a r i n g f i r s t f i t f l a g a r r ay (f f f l a g) which i s
used f o r ma in t a i n i ng the s t a t u s o f each b l o ck (
f r e e or busy)

8

9 ff_allot = zeros(1, size_process); //
De c l a r i n g f i r s t f i t a r r ay (f f a l l o t)

10 ff_flag = zeros(1, size_block);

11

12 // For l oop f o r a l l o c a t i n g b l o c k s a c c o r d i n g to
f i r s t f i t

13

14 for i=1: size_process

15 for j=1: size_block

16 if p(i) <= b(j) && ff_flag(j)==0 then

// i f p r o c e s s s i z e i s l e s s than b l o ck
s i z e and b l o ck i s f r e e

17 ff_allot(i) = j;

// s t o r e index p o s i t i o n o f the b l o ck
i n f f a l l o t i n the index p o s i t i o n i (
p r o c e s s number)

18 ff_flag(j) = 1;

// s e t s t a t u s as busy
19 break

20 end ,

21 end

22 end

23 endfunction

First Fit Memory Allocation

Scilab code AP 4
1 // D i sp l ay Funct ion : I t p r i n t s a l l r e q u i r e d d e t a i l s

such as P ro c e s s no . , P r o c e s s s i z e , Block no . ,
2 // Block s i z e f o r F i r s t Fit , Best F i t and Worst F i t .
3

4 function display(allot ,allotsize ,size_process ,p)

5 for i=1: size_process

42

6 if allot(i)==0 then

7 mprintf(”P%d\ t \t%d\ t Not a l l o c a t e d
−\n”,i,p(i)) // D i sp l ay
the P ro c e s s number tha t cou ld not
a l l o c a t e d

8 else

9 mprintf(”P%d\ t \t%d\ t \tB%d\ t %d\n”,i,p(i
),allot(i),allotsize(i)) // D i sp l ay
the P ro c e s s number with a l l o c a t e d
Block number

10 end ,

11 end

12 endfunction

Display Function

Scilab code AP 51 // Best F i t Memory A l l o c a t i o n , the
o p e r a t i n g system s e a r c h e s the whole memory
a c c o r d i n g to the s i z e o f the g i v en p r o c e s s

2 // and a l l o c a t e s i t to the sm a l l e s t h o l e which i s b i g
enough to accommodate i t .

3

4

5 function [bf_allot]= bestFit(p,b,size_process ,

size_block)

6

7

8 // d e c l a r i n g b e s t f i t f l a g a r r ay (b f f l a g) which
i s used f o r ma in t a i n i ng the s t a t u s o f each b l o ck (
f r e e or busy)

9

10 bf_allot = zeros(1, size_process); //
d e c l a r i n g b e s t f i t a r r ay (b f a l l o t)

11 bf_flag = zeros(1, size_block);

12

13 // For l oop f o r a l l o c a t i n g b l o c k s a c c o r d i n g to
b e s t f i t

14 for i=1: size_process

43

15 k = -1; // k −
i ndex p o s i t i o n o f the sm a l l e s t b l o ck
which can accommodate a p r o c e s s ,
i n i t i a l l y s e t to −1

16 for j=1: size_block

17 if p(i)<=b(j) && bf_flag(j) == 0 then //
i f p r o c e s s s i z e i s l e s s than b l o ck

s i z e and b l o ck i s f r e e
18 if k==-1 then

19 k = j; // update k
with index p o s i t i o n o f the
b l o ck

20 elseif(b(j)<b(k)) // i f t h e r e
i s a sma l l e r b l o ck which can
accommodate the p r o c e s s

21 k = j; // update k
with the index p o s i t i o n o f
the sma l l e r b l o ck

22 end ,

23 end ,

24 end

25 if(k==-1)

26 bf_allot(i)=0; // i f no
b l o ck can accomodate the p r o c e s s , s e t
a l l o t t e d b l o ck number as 0

27 else

28 bf_allot(i) = k; // s t o r e the
s e l e c t e d index i n the b e s t f i t a r r ay
i n the index p o s i t i o n i (p r o c e s s
number)

29 bf_flag(k) = 1; // s e t the
s t a t u s o f the s e l e c t e d b l o ck as busy

30 end ,

31 end

32 endfunction

Best Fit Memory Allocation

44

Scilab code AP 6
1 // In t h i s program D e k k e r s Algor i thm i s used ,

to en su r e one p r o c e s s e n t e r s the c r i t i c a l s e c t i o n
at a t ime wh i l e the o th e r p r o c e s s e s need to wa i t
f o r the f i r s t one to l e a v e the c r i t i c a l s e c t i o n .

2

3 function [] = Psyn(a,b,limit)

4 while (i<= limit)

5 printf(”\n”)
6 x = input(”SELECT THE OPTION : ”)
7

8 //PROCESS 1 ENTERS
9 if x==1 then // Option 1

10 c1=0;

11 while c2==0

12 if turn ==2 then

13 c1=1;

14 while turn ==2 //do noth ing
15 end

16 c1=0;

17 end

18 end

19 // c r i t i c a l s e c t i o n
20 count0=count0+a;

21 i=i+a;

22 // y i e l d
23 c1=1;

24 turn =2;

25 // rema inder s e c t i o n
26 if (count0 >limit) | (i>limit) then

27 printf(” Exceeds the l i m i t o f CS\n”)
28 printf(”END\n”);
29 i = 100;

30 else

31 if(a>0)

32 printf(” Pro c e s s P1 Ente r s the
C r i t i c a l s e c t i o n ”);

33 printf(”\ nTota l Time o f P1 in

45

C r i t i c a l S e c t i o n :%d\n”,count0);
34 end

35 printf(”\ n I t i s the turn p r o c e s s P2\n
”);

36 end

37 end

38

39 //PROCESS 2 ENTERS
40 if x==2 then // Option 2
41 c2=0;

42 while c1==0

43 if turn ==1

44 c2=1;

45 while turn ==1 //do noth ing
46 end

47 c2=0;

48 end

49 end

50 // c r i t i c a l s e c t i o n
51 count1=count1+b;

52 i=i+b;

53 // y i e l d
54 c2=1;

55 turn =1;

56 // rema inder s e c t i o n
57 if (count1 >limit) | (i>limit) then

58 printf(” Exceeds the l i m i t o f CS\n”)
59 printf(”END\n”);
60 i = 100;

61 else

62 if(b>0)

63 printf(” Pro c e s s P2 Ente r s the
C r i t i c a l s e c t i o n ”);

64 printf(”\ nTota l Time o f P2 in
C r i t i c a l S e c t i o n :%d\n”,count1);

65 end

66 printf(”\ n I t i s the turn p r o c e s s P1\n
”);

46

67 end

68 end

69

70 //BOTH PROCESS ENTER AT SAME TIME Option 3
71 if x==3 then

72 printf(”\nBoth p r o c e s s cant e n t e r at same
t ime in C r i t i c a l S e c t i o n \n”);

73 if i>limit then

74 printf(”END\n”);
75 i = 100;

76 end

77 end

78

79 //END f o r OTHER CONDITIONS Option 4
80 if x==4 then

81 printf(”\nEND\n”);
82 i = 100;

83 end

84 end

85 endfunction

Dekker Algorithm

Scilab code AP 71 // Deadlock − Bankers Algor i thm
2

3 function [] = Deadlock(n,m)

4

5 // P0 P1 P2 P3 and P4 a r e the p r o c e s s names .
6 A=[0 1 0;2 0 0;3 0 2;2 1 2;0 0 2]; // Giv ing the

p r o c e s s a l l o c a t i o n v a l u e s
7 M=[7 5 3;3 2 2;9 0 2;2 2 2;4 3 3]; // Giv ing the

maximum va l u e s
8 L=[3 3 2]; // This g i v e s the a v a i l a b l e v a l u e s
9 ind =0;

10 ans1=list();

11 z=1;

12 f=list();

13

47

14 for k=1:5 // I t e r a t i n g the v a l u e s f o r a l l the 5
p r o c e s s e s

15 f(k)=0;

16 end

17

18 for i=1:5 // I t e r a t i n g the v a l u e s f o r a l l the
p r o c e s s e s

19 for j=1:3 // I t e r a t i n g the va lu e f o r a l l the
p r o c e s s e s

20 need(i,j)= M(i,j) - A(i,j); // Need i s
c a l c u l a t e d by s ub t a c t i n g the maximum and
a v a i l a b e r e s o u r c e s

21

22 end;

23

24 end

25 y=0;

26 for k=1:5 // I t e r a t i n g f o r a l l the 5 p r o c e s s e s
27 for i=1:5

28 if(f(i)==0) then

29 flag = 0; // Flag va lu e i s s e t z e r o
30 for j=1:3 // I t e r a t i n g f o r a l l the r e s o u r c e s
31 if (need(i,j) > L(j)) then // I f the

need va lu e i s more than the Ava i l a b l e
r e s o u r c e s , the r e q u e s t cannot be

g rant ed
32 flag =1; // Then the f l a g i s s e t to 1
33 break; // The l oop b r eak s he r e
34 end

35 end

36 if (flag ==0) then // I f the c o n d i t i o n i s
s a t i s f i e d the next p r o c e s s i s checked
s i m i l a r l y

37 ans1(z)=i;

38 z=z+1;

39

40 for y=1:3

41 L(y)= L(y)+A(i,y); // I f the c o n d i t i o n i s

48

s a t i s f i e d the a v a i l a b l e v a l u e i s
updated by adding a v a i l a b l e va l u e and
the a l l o c a t e d r e s o u r c e s o f the

p a r t i c u l a r p r o c e s s
42 end

43 f(i)=1;

44 end

45 end

46 end

47 end

48

49 // For l oop f o r d i s p l a y i n g SAFE Sequence which
s a t i s f i e s the s a f e t y

50 for i=1:5

51 ans1(i)=ans1(i) -1;

52 end

53 for i=1:5

54

55 mprintf(’ <P%d> , ’ ,ans1(i));
56

57 end;

58 endfunction

Deadlock Bankers Algorithm

Scilab code AP 81 // Funct ion f o r RoundRobin Algor i thm
2

3 function [tat ,wait_time]= roundrobin(q,n,at ,bt)

4

5 remain = n// S t o r i n g no o f p r o c e s s i n a v a r i a b l e
c a l l e d n

6

7 wait_time =0;

8 tat =0;

9

10 quantum_time=q;

11 // d i s p (” P ro c e s s Turnaround t ime
Wait ing t ime ”) ;

49

12

13 time =0; // comp l e t i on t ime i s i n i t i a l l y s e t to z e r o
14

15 for i=1:4

16 rt(i)=bt(i);

17 end;

18

19 // runn ing the p r o c e s s e s f o r s p e c i f i e d quantum
20 while remain ~=0

21 for i=1:4

22

23 if rt(i)<=quantum_time & rt(i)>0 then //
e x e c u t e s i f bu r s t t ime i s g r e a t e r than 0
and l e s s e r than quantum time

24 time=time+rt(i);// update comp l e t i on
t ime

25 rt(i)=0;

26 flag =1;

27 elseif rt(i)>0 then

28 rt(i)=rt(i)-quantum_time;// update
bu r s t t ime

29 time=time+quantum_time;

30 end;

31 if rt(i)==0 & flag ==1 then // e x e c u t e s i f
bu r s t t ime i s equa l to 0 and f l a g=1

32 remain = remain -1;

33 mprintf(’ \n P%i\ t \ t \ t %i\ t \ t \ t %i ’ ,i
,time -at(i),time -at(i)-bt(i));

34 tat=tat+time -at(i);//Turnaround t ime
= comp l e t i on time−a r r i v a l t ime

35 wait_time = wait_time+time -at(i)-bt(

i);//Wait ing t ime = turnaround−
bu r s t t ime

36 flag =0;

37 end;

38 if i==n-1

39 i=1;

40 elseif at(i)<=time then // e x e c u t e s when

50

a r r i v a l t ime i s l e s s e r than / equa l to
comp l e t i on t ime

41 i=1;

42 else

43 i=1;

44 end;

45 end;

46 end;

47

48 // d i s p l a y f u n c n c t i o n c a l l
49 d = displayfunc(tat ,wait_time); // Average

D i s p l a y i n g turn around t ime and Average wa i t i n g
t ime

50

51 endfunction

Round Robin Scheduling New

Scilab code AP 9
1 function [atat ,awt] = displayfunc(tat ,wait_time)

2 awt=wait_time *1.0/4; // Tota l wa i t t ime /no o f
p r o c e s s e s g i v e s ave rage wa i t i n g time ,
s i m i l a r l y avg turnaround t ime i s c a l c u l a t e d

3 atat=tat *1.0/4;

4

5 mprintf(”\n”)
6

7 disp(”Average Wait ing Time u s i n g RR= ”); //
D i s p l a y i n g Average wa i t i n g t ime

8 disp(awt);

9

10 disp(”Average Turnaround Time u s i n g RR= ”); //
D i s p l a y i n g Average Turnaround t ime

11 disp(atat);

12 endfunction

Display Function of Round Robin

51

Scilab code AP 101 // SJF Schedu l i n g f u n c t i o n
2

3 function [tat ,wait_time]= shortestjobfirst(num ,btime ,

wtime ,tatime)

4 total =0; // t o t a l wa i t i n g t ime
5 total2 =0;

6 n=num;

7 ptime=btime;

8 process =[1 2 3 4]; // p r o c e s s i d
9 fd = %io(2);

10

11 for i=1:1:n-1 // s o r t i n g the p r o c e s s e s i n terms o f
p r o c e s s t imes

12 for j=i+1:1:n

13 if(ptime(i)>ptime(j))

14 temp=ptime(i);

15 ptime(i) = ptime(j);

16 ptime(j) = temp;

17 temp = process(i);

18 process(i) = process(j);

19 process(j) = temp;

20 end

21 end

22

23 end

24

25 wtime (1) = 0;

26 for i=2:1:n

27 wtime(i) = wtime(i-1)+ptime(i-1); // wa i t t ime
o f a p r o c e s s i s sum o f wa i t t ime o f p r o c e s s
b e f o r e i t and p r o c e s s t ime o f p r o c e s s b e f o r e
i t

28 total = total + wtime(i); // f i n d i n g
t o t a l wa i t i n g t ime

29 end

30

31 tatime (1) = 0;

32 for i=1:1:n

52

33 tatime(i)=ptime(i)+wtime(i); // turn around
t ime=bur s t t ime +wai t t ime

34 total2=total2+tatime(i); // t o t a l
turn around t ime

35 end

36

37 avg1 = total2/n; // f i n d i n g
ave rage t ime

38

39 for i=1:1:n

40 mfprintf(fd, ’ P%d i s %d ’ ,process(i),tatime(i))
;

41 end

42

43 mfprintf(fd, ’ \n Average Turn−Around Time in SJF
%. 2 f ’ ,avg1);

44

45 endfunction

SJF algorithm for Turn Around Time and Average Turn Around Time cal-
culation

Scilab code AP 111 // Round Robin Schedu l i n g f u n c t i o n
2

3 function [tat ,wait_time]= roundrobin(num ,btime ,wtime ,

tatime)

4 b=0;

5 t=0;

6 n=num

7 q=5; //quantum time
8 wtime=zeros(1,n); // wa i t i n g t ime
9 fd = %io(2);

10 rtime=btime // bu r s t t ime
11

12 // For l oop : runn ing the p r o c e s s e s f o r s p e c i f i e d
quantum

13

14 for i=1:1:n // runn ing the p r o c e s s e s f o r 1

53

quantum
15 if(rtime(i)>=q)

16 for j=1:1:n

17 if(j==i)

18 rtime(i)=rtime(i)-q; // s e t t i n g
the r ema in ing t ime i f i t i s the
p r o c e s s s ch edu l ed

19 else if(rtime(j) >0)

20 wtime(j)=wtime(j)+q; //
i n c r emen t i n g wa i t t ime i f i t
i s not the p r o c e s s s ch edu l ed

21 end

22 end

23 end

24 else if(rtime(i) >0)

25 for j=1:1:n

26 if(j==i)

27 rtime(i)=0; // as the
r ema in ing t ime i s l e s s than

quantum i t w i l l run the p r o c e s s
and end i t

28 else if(rtime(j) >0)

29 wtime(j)=wtime(j)+rtime(i);

// i n c r emen t i n g wa i t t ime i f
i t i s not the p r o c e s s
s ch edu l ed

30 end

31 end

32 end

33 end

34 end

35 end

36 for i=1:1:n

37 if(rtime(i) >0) // i f r ema in ing t ime i s l e f t
s e t f l a g

38 flag =1;

39 end

40 end

54

41 while(flag ==1) // i f f l a g i s s e t run the
above p r o c e s s aga in

42 flag =0;

43 for i=1:1:n

44 if(rtime(i)>=q)

45 for j=1:1:n

46 if(j==i)

47 rtime(i)=rtime(i)-q;

48 else if(rtime(j) >0)

49 wtime(j)=wtime(j)+q;

50 end

51 end

52 end

53 else if(rtime(i) >0)

54 for j=1:1:n

55 if(j==i)

56 rtime(i)=0;

57 else if(rtime(j) >0)

58 wtime(j)=wtime(j)+rtime(

i);

59 end

60 end

61 end

62 end

63 end

64 end

65 for i=1:1:n

66 if(rtime(i) >0)

67 flag =1;

68 end

69 end

70 end

71

72 // For l oop : c a l c u l a t i n g turn around t ime f o r each
p r o c e s s

73 for i=1:1:n

74 tatime(i)=wtime(i)+btime(i); //By adding
wa i t i n g t ime and bu r s t t ime

55

75 end

76 for i=1:1:n

77 b=b+wtime(i);

78 t=t+tatime(i);

79 end

80

81 for i=1:1:n

82 mfprintf(fd, ’ P%d i s %d ’ ,i,tatime(i));
83 end

84

85 // d i s p l a y i n g the Average Turn−Around Time in RR
86

87 mfprintf(fd, ’ \n Average Turn−Around Time in RR
%. 2 f ’ ,t/n);

88

89 endfunction

Round Robin Scheduling for Turn Around Time and Average Turn Around
Time calculation

Scilab code AP 121 function [tat ,wait_time]=

firstcomefirstserve(num ,btime ,wtime ,tatime) //
Funct ion d e f i n t i o n o f f i r s t come f i r s t s e r v e

2

3 t1=0; // i n t i a l i z i n g t ime t1=0 f o r
t o t a l wa i t i n g t ime c a l c u l a t i o n

4 t2=0; // i n t i a l i z i n g t ime t2=0 f o r
t o t a l turn round t ime c a l c u l a t i o n

5

6 btime = bt; // a s s i g n i n g bu r s t t ime
7 wtime = wt; // a s s i g n i n g wa i t i n g t ime
8 tatime = tat // a s s i g n i n g turn around t ime
9 n=num; // a s s i g n i n g number o f p r o c e s s n

=4 he r e
10 fd = %io(2);

11

12 // For l oop f o r c a l c u l a t i n g t o t a l turn around t ime
o f each Pro c e s s

56

13 for i=2:1:n

14 wtime(i)=btime(i-1)+wtime(i-1); // wa i t i n g t ime
w i l l be sum o f bu r s t t ime o f p r e v i o u s p r o c e s s
and wa i t i n g t ime o f p r e v i o u s p r o c e s s

15 t1=t1+wtime(i); // c a l c u l a t i n g
t o t a l t ime

16 end

17

18 for i=1:1:n

19 tatime(i)=btime(i)+wtime(i); // turn around
t ime=bur s t t ime +wai t t ime

20 t2=t2+tatime(i); // t o t a l turn
around t ime

21 end

22

23 for i=1:1:n

24 mfprintf(fd, ’ P%d i s %d ’ ,i,tatime(i));
25 end

26

27

28 mfprintf(fd, ’ \n Average Turn−Around Time in FCFS
%. 2 f ’ ,t2/n);

29

30 endfunction

FCFS Turn Around and Average Turn Around Calculation

Scilab code AP 131 // SJF Schedu l i n g
2

3 function [tat ,wait_time]= shortestjobfirst(num ,btime ,

wtime ,tatime)

4 total =0; // t o t a l wa i t i n g t ime
5 n=num;

6 ptime=btime;

7 process =[1 2 3 4]; // p r o c e s s i d
8 fd = %io(2);

9

57

10 for i=1:1:n-1 // s o r t i n g the p r o c e s s e s i n terms o f
p r o c e s s t imes

11 for j=i+1:1:n

12 if(ptime(i)>ptime(j))

13 temp=ptime(i); // a s s i g n i n g Temporary
v a r i a b l e f o r s o r t i n g

14 ptime(i) = ptime(j);

15 ptime(j) = temp;

16 temp = process(i);

17 process(i) = process(j);

18 process(j) = temp;

19 end

20 end

21

22 end

23

24 wtime (1) = 0;

25 for i=2:1:n

26 wtime(i) = wtime(i-1)+ptime(i-1); // wa i t t ime
o f a p r o c e s s i s sum o f wa i t t ime o f p r o c e s s
b e f o r e i t and p r o c e s s t ime o f p r o c e s s b e f o r e
i t

27 total = total + wtime(i); // f i n d i n g
t o t a l wa i t i n g t ime

28 end

29

30 avg = total/n; // f i n d i n g
ave rage t ime

31

32 for i=1:1:n

33 mfprintf(fd, ’ P%d i s %d ’ ,process(i),wtime(i));
34 end

35

36 mfprintf(fd, ’ \n Average Wait ing Time in SJF i s
%. 2 f ’ ,avg);

37

38 endfunction

58

SJF for Turn Around Time and Average Turn Around Time calculation

Scilab code AP 141 // Round Robin Schedu l i n g
2 function [tat ,wait_time]= roundrobin(num ,btime ,wtime ,

tatime)

3 b=0;

4 t=0;

5 n=num

6 q=5; //quantum time
7 wtime=zeros(1,n); // wa i t i n g t ime
8 fd = %io(2);

9 rtime=btime

10

11 // runn ing the p r o c e s s e s f o r s p e c i f i e d quantum
12 for i=1:1:n // runn ing the p r o c e s s e s f o r

quantum =5
13 if(rtime(i)>=q)

14 for j=1:1:n

15 if(j==i)

16 rtime(i)=rtime(i)-q; // s e t t i n g
the r ema in ing t ime i f i t i s the
p r o c e s s s ch edu l ed

17 else if(rtime(j) >0)

18 wtime(j)=wtime(j)+q; //
i n c r emen t i n g wa i t t ime i f i t
i s not the p r o c e s s s ch edu l ed

19 end

20 end

21 end

22 else if(rtime(i) >0)

23 for j=1:1:n

24 if(j==i)

25 rtime(i)=0; // as the
r ema in ing t ime i s l e s s than

quantum i t w i l l run the p r o c e s s
and end i t

26 else if(rtime(j) >0)

59

27 wtime(j)=wtime(j)+rtime(i);

// i n c r emen t i n g wa i t t ime i f
i t i s not the p r o c e s s
s ch edu l ed

28 end

29 end

30 end

31 end

32 end

33 end

34 for i=1:1:n

35 if(rtime(i) >0) // i f r ema in ing t ime i s l e f t
s e t f l a g

36 flag =1;

37 end

38 end

39

40 // Tota l wa i t i n g t ime , p r o c e s s e s ave rage wa i t i n g
t ime c a l c u l a t i o n

41 while(flag ==1) // i f f l a g i s s e t run the
above p r o c e s s aga in

42 flag =0;

43 for i=1:1:n

44 if(rtime(i)>=q)

45 for j=1:1:n

46 if(j==i)

47 rtime(i)=rtime(i)-q;

48 else if(rtime(j) >0)

49 wtime(j)=wtime(j)+q;

50 end

51 end

52 end

53 else if(rtime(i) >0)

54 for j=1:1:n

55 if(j==i)

56 rtime(i)=0;

57 else if(rtime(j) >0)

58 wtime(j)=wtime(j)+rtime(

60

i); // Updation o f
wa i t i n g t ime f o r each
p r o c e s s

59 end

60 end

61 end

62 end

63 end

64 end

65 for i=1:1:n

66 if(rtime(i) >0)

67 flag =1;

68 end

69 end

70 end

71

72 // d i s p l a y i n g the wa i t i n g t ime in RR
73

74 for i=1:1:n

75 mfprintf(fd, ’ P%d i s %d ’ ,i,wtime(i));
76 end

77

78 // Ca l c u l a t i n g Average Wait ing Time
79 for i=1:1:n

80 b=b+wtime(i);

81 t=t+tatime(i);

82

83 end

84

85 // d i s p l a y i n g the Average wa i t i n g t ime in RR
86

87 mfprintf(fd, ’ \n Average Wait ing Time in Round
Robin i s %. 2 f ’ ,b/n);

88

89 endfunction

Round Robin Scheduling for Waiting and Average Waiting Time calculation

61

Scilab code AP 151 function [tat ,wait_time]=

firstcomefirstserve(num ,btime ,wtime ,tatime) //
Funct ion d e f i n t i o n o f f i r s t come f i r s t s e r v e

2

3 t1=0; // i n t i a l i z i n g t ime t1=0 f o r
t o t a l wa i t i n g t ime c a l c u l a t i o n

4 t2=0; // i n t i a l i z i n g t ime t2=0 f o r
t o t a l turn round t ime c a l c u l a t i o n

5

6 btime = bt; // a s s i g n i n g bu r s t t ime
7 wtime = wt; // a s s i g n i n g wa i t i n g t ime
8 tatime = tat // a s s i g n i n g turn around t ime
9 n=num; // a s s i g n i n g number o f p r o c e s s n

=4 he r e
10 fd = %io(2);

11

12 // For l oop f o r c a l c u l a t i n g t o t a l wa i t i n g t ime o f
each Pro c e s s

13 for i=2:1:n

14 wtime(i)=btime(i-1)+wtime(i-1); // wa i t i n g t ime
w i l l be sum o f bu r s t t ime o f p r e v i o u s

p r o c e s s and wa i t i n g t ime o f p r e v i o u s p r o c e s s
15 t1=t1+wtime(i); // c a l c u l a t i n g

t o t a l wa i t i n g t ime
16 end

17

18

19 // d i s p l a y i n g the wa i t i n g t ime o f each Pro c e s s
20 for i=1:1:n

21 mfprintf(fd, ’ P%d i s %d ’ ,i,wtime(i));
22 end

23

24 mfprintf(fd, ’ \n Average Wait ing Time in FCFS i s
%. 2 f ’ ,t1/n);

25

26 endfunction

FCFS Waiting and Average Waiting Calculation

62

Scilab code AP 161 //WINDOWS 10 64−BIT OS , S c i l a b and
t oo l b ox v e r s i o n s 6 . 1 . 0 .

2

3 // l o a d i n g the n e c e s s a r y f u n c t i o n s
4 function [tat ,wait_time]= shorestjobfirst(pid ,num ,pt ,

wt ,tat) // Funct ion d e f i n t i o n o f f i r s t come
f i r s t s e r v e

5

6 process=pid; // p r o c e s s i d
7 n=num; // number o f p r o c e s s e s
8 ptime = pt; // p r o c e s s t ime or bu r s t t ime
9 tatime =tat; // turn around t ime
10 wtime = wt; // wa i t i n g t ime
11 fd = %io(2);

12

13 // Determin ing the number o f p r o c e s s e s and b l o c k s
14 size_process = size(process);

15 size_process = size_process (2);

16 size_ptime = size(ptime);

17 size_ptime = size_ptime (2);

18

19 //marks the p o s i t i o n o f p r o c e s s with minimum bur s t
t ime i n the s p e c i f i e d range . This may be used to
r e a r r a n g e the o rd e r o f the p r o c e s s e s to a ch i e v e
p rope r SJF s c h e du l i n g . . .

20 for i=1:1:n-1 // For l oop f o r s o r t i n g the p r o c e s s e s
i n terms o f p r o c e s s t imes

21 for j=i+1:1:n

22 if(ptime(i)>ptime(j))

23 temp=ptime(i); // temporary
v a r i a b l e used to enab l e e f f i c i e n t
swapping o f v a l u e s . .

24 ptime(i) = ptime(j);

25 ptime(j) = temp;

26 temp = process(i);

27 process(i) = process(j);

28 process(j) = temp;

29 end

63

30 end

31

32 end

33

34 wtime (1) = 0;

35 // wa i t i n g t ime c a l c u l a t i o n
36 for i=2:1:n

37 wtime(i) = wtime(i-1)+ptime(i-1); // wa i t t ime
o f a p r o c e s s i s sum o f wa i t t ime o f p r o c e s s
b e f o r e i t and p r o c e s s t ime o f p r o c e s s b e f o r e
i t

38 total = total + wtime(i); // f i n d i n g
t o t a l wa i t i n g t ime

39 end

40

41 // t o t a l turnaround t ime c a l c u l a t i o n
42 for i=1:1:n

43 tatime(i)=ptime(i)+wtime(i); // turn around
t ime=bur s t t ime +wai t t ime

44 total2=total2+tatime(i); // t o t a l
turn around t ime

45 end

46

47 avg = total/n; // f i n d i n g
ave rage time , ave rage wa i t i n g t ime c a l c u l a t e d by
d i v i d i n g t o t a l wa i t i n g t ime by number o f p r o c e s e s

48 avg1 = total2/n; // ave rage
turn around t ime c a l c u l a t e d by d i v i d i n g t o t a l
turn around t ime by number o f p r o c e s s e s

49

50 display(process ,size_process ,wtime ,tatime ,avg ,avg1);

// d i s p l a y i n g the p r o c e s s and b l o ck
a l l o c a t i o n by f i r s t f i t a r r ay

51 endfunction

SJF New

64

Scilab code AP 171 //WINDOWS 10 64−BIT OS , S c i l a b and
t oo l b ox v e r s i o n s 6 . 1 . 0 .

2 // D i sp l ay Funct ion : I t p r i n t s a l l r e q u i r e d d e t a i l s
such as P ro c e s s no .

3 //Wait ing time , Turn−Around time , Average Wait ing
t ime and Average Turn−Around t ime

4

5 function display(process ,size_process ,wtime ,tatime ,

avg ,avg1)

6 // d i s p l a y o f f i n a l v a l u e s
7

8 for i=1:1:n

9 mfprintf(fd, ’ P%d ’ ,process(i)); //
D i s p l a y i n g s o r t e d Pro c e s s based on i t s
S h o r t e s t Job

10 end

11

12 disp(’ Wait ing t ime o f each Pro c e s s u s i n g SFJ ’); //
d i s p l a y i n g the Wait ing t ime

13 for i=1:1:n

14 mfprintf(fd, ’ P%d i s %d ’ ,process(i),wtime(i));
15 end

16

17 disp(’ Turn−Around t ime o f each Pro c e s s u s i n g SFJ ’);
// d i s p l a y i n g the Turn−Around t ime

18 for i=1:1:n

19 mfprintf(fd, ’ P%d i s %d ’ ,process(i),tatime(i))
;

20 end

21

22 mfprintf(fd, ’ \n Average Wait ing Time u s i n g SJF i s
%. 2 f ’ ,avg); // d i s p l a y i n g the Average Wait ing
t ime

23 mfprintf(fd, ’ \n Average Turn−Around Time u s i n g SFJ
i s %. 2 f ’ ,avg1); // d i s p l a y i n g the Average Turn−

Around t ime
24

25 endfunction

65

Display Function SJF new

Scilab code AP 181 function [tat ,wait_time]=

firstcomefirstserve(num ,btime ,wtime ,tatime) //
Funct ion d e f i n t i o n o f f i r s t come f i r s t s e r v e

2

3 t1=0; // i n t i a l i z i n g t ime t1=0 f o r
t o t a l wa i t i n g t ime c a l c u l a t i o n

4 t2=0; // i n t i a l i z i n g t ime t2=0 f o r
t o t a l turn round t ime c a l c u l a t i o n

5

6 btime = bt; // a s s i g n i n g bu r s t t ime
7 wtime = wt; // a s s i g n i n g wa i t i n g t ime
8 tatime = tat // a s s i g n i n g turn around t ime
9 n=num; // a s s i g n i n g number o f p r o c e s s n

=4 he r e
10 fd = %io(2);

11

12 // For l oop f o r c a l c u l a t i n g t o t a l wa i t i n g t ime o f
each Pro c e s s

13 for i=2:1:n

14 wtime(i)=btime(i-1)+wtime(i-1); // wa i t i n g t ime
w i l l be sum o f bu r s t t ime o f p r e v i o u s

p r o c e s s and wa i t i n g t ime o f p r e v i o u s p r o c e s s
15 t1=t1+wtime(i); // c a l c u l a t i n g

t o t a l wa i t i n g t ime
16 end

17

18 // For l oop f o r c a l c u l a t i n g t o t a l turn around t ime o f
each Pro c e s s

19 for i=1:1:n

20 tatime(i)=btime(i)+wtime(i); // turn around
t ime=bur s t t ime +wai t t ime

21 t2=t2+tatime(i); // t o t a l turn
around t ime

22 end

23

66

24

25 // d i s p l a y i n g the wa i t i n g t ime o f each Pro c e s s
26 for i=1:1:n

27 mfprintf(fd, ’ P%d i s %d ’ ,i,wtime(i));
28 end

29

30 disp(’ Turn−Around Time o f each Pro c e s s ’);
// d i s p l a y i n g the f i n a l Turn−Around t ime o f
each Pro c e s s

31 for i=1:1:n

32 mfprintf(fd, ’ P%d i s %d ’ ,i,tatime(i));
33 end

34

35 mfprintf(fd, ’ \n Average Wait ing Time i s %. 2 f ’
,t1/n); // d i s p l a y i n g the Average
wa i t i n g t ime

36 mfprintf(fd, ’ \n Average Turn−Around Time i s %
. 2 f ’ ,t2/n); // d i s p l a y i n g the Average Turn
Around t ime

37

38 endfunction

First Come First Serve CPU Scheduling

67

	
	First Come First Serve Non pre-emptive CPU Scheduling using Scilab
	Shortest Job First (SJF) Pre-emptive CPU Scheduling using Scilab
	Graphical Analysis with Waiting time & Average waiting time of CPU Scheduling Algorithms using Scilab
	Graphical Analysis with turn-around time & Average turnaround time of CPU Scheduling Algorithms using Scilab
	Round Robin (RR) Pre-emptive CPU Scheduling using Scilab
	Comparison of Various Partition Allocation Algorithms using Scilab
	Deadlock Avoidance using Scilab
	Process Synchronization Techniques using Scilab
	Memory Management using Scilab
	Page Replacement Algorithm using Scilab

