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Experiment: 1

First Come First Serve Non
pre-emptive CPU Scheduling
using Scilab

check Appendix AP 18 for dependency:

fcfs.sci

Scilab code Solution 1.0 First Come First Serve Non Preemptive CPU
Scheduling using Scilab

1 clear;

2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4

5 // Schedu l i n g i s a matter o f managing queues and to
d e c i d e which o f the p r o c e s s have to be execu t ed
next to a ch i e v e h igh e f f i c i e n c y l e v e l .

6 // F i r s t Come F i r s t Se rve (FCFS) Non Pre−empt ive :
Jobs a r e a lways exe cu t ed on a f i r s t −come , f i r s t −
s e r v e b a s i s .
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7

8 // Func t i on s to be l oaded
9 exec(” f c f s . s c i ”);// f c f s . s c i dependency f i l e
10

11

12 num =4; //no o f p r o c e s s e s P1 , P2 , P3 , P4
13

14 bt=[10 2 8 6]; // Sample bu r s t t ime
15 wt=zeros(1,num); // wa i t i n g t ime
16 tat=zeros(1,num); // turn around t ime
17

18 disp(” F i r s t Come F i r s t Se rve (FCFS) Non Pre−
empt ive CPU Schedu l i n g ”);

19 disp(” Burst t ime o f the g i v en Pro c e s s P1=10 , P2
=2 , P3=8 , P4=6”);

20

21 disp( ’ Wait ing Time o f each Pro c e s s ’ ); // d i s p l a y i n g
the wa i t i n g t ime

22

23 fcfs = firstcomefirstserve(num ,bt,wt,tat) //
Ca l l i n g f i r s t come f i r s t s e r v e f u n c t i o n
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Experiment: 2

Shortest Job First (SJF)
Pre-emptive CPU Scheduling
using Scilab

check Appendix AP 17 for dependency:

display_sjf_new.sci

Scilab code Solution 2.0 Shortest Job First

1 clear;

2 clc;

3

4 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

5

6 //SJF s c h e du l i n g i s employed when s e v e r a l p r o c e s s e s
a r r i v e a lmost at the same time , so as to avo id
c o n f l i c t , e n su r e maximum CPU u t i l i z a t i o n with
minimum wa i t i n g time , turnaround t ime to min imize
s t a r v a t i o n . The a lgorthm can be used f o r both
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c a s e s i . e . , when a r r i v a l t ime i s the same f o r a l l
o r most p r o c e s s e s and when t h e r e a r e s l i g h t l y

d i f f e r e n t a r r i v a l t imes . In c a s e o f same a r r i v a l
time , the v a l u e s amy be s e t to 0 by d e f a u l t by
the u s e r

7

8 // l o a d i n g the n e c e s s a r y f u n c t i o n s
9

10 exec(” s j f n ew . s c i ”);
11 exec(” d i s p l a y s j f n e w . s c i ”);
12

13 num =4; //no o f p r o c e s s e s P1 , P2 , P3 , P4
14 pt=[10 2 8 6 ]; // p r o c e s s t ime or bu r s t t ime
15 pid =[1 2 3 4]; // p r o c e s s i d
16 wt=zeros(1,num); // wa i t i n g t ime
17 tat=zeros(1,num); // turn around t ime
18 total =0; // t o t a l wa i t i n g t ime
19 total2 =0; // t o t a l turn around t ime
20

21 disp(” Sh o r t e s t Job F i r s t ( SJF ) Pre−empt ive CPU
Schedu l i n g ”);

22 disp(” Burst t ime o f the g i v en Pro c e s s P1=10 , P2=2 ,
P3=8 , P4=6”);

23

24

25 disp(” So r t ed Pro c e s s based on i t s S h o r t e s t Job”);
26

27 sjf = shorestjobfirst(pid ,num ,pt,wt,tat); //
Ca l l i n g s h o r e s t j ob f i r s t f u n c t i o n

check Appendix AP 16 for dependency:

sjf_new.sci
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Experiment: 3

Graphical Analysis with
Waiting time & Average
waiting time of CPU
Scheduling Algorithms using
Scilab

check Appendix AP 15 for dependency:

fcfs_wt_awt.sci

Scilab code Solution 3.0 Graphical Analysis WT and AWT

1 clear;

2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4
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Figure 3.1: Graphical Analysis WT and AWT
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5 // Schedu l i n g a l g o r i t hms d e a l s to min imize queu ing
de l ay and to op t im i z e pe r f o rmance o f queu ing
env i ronment . In t h i s a n a l y s i s , some common
s c h e du l i n g a l g o r i t hms l i k e F i r s t Come F i r s t Se rve
(FCFS) , S h o r t e s t Job F i r s t ( SJF ) and Round Robin
(RR) Schedu l i n g a r e s t u d i e d and r ev i ewed on the

b a s i s o f t h e i r work ing s t r a t e g y
6

7

8 // Func t i on s to be l oaded
9 exec(” f c f s w t aw t . s c i ”); // f c f s w t aw t . s c i

dependency f i l e
10 exec(” s j f w t aw t . s c i ”); // s j f w t aw t . s c i dependency

f i l e
11 exec(” r r w t awt . s c i ”); // r r w t awt . s c i dependency

f i l e
12

13 num =4; //no o f p r o c e s s e s P1 , P2 , P3 , P4
14 bt=[10 2 8 6]; // Sample bu r s t t ime
15 wt=zeros(1,num); // wa i t i n g t ime
16 tat=zeros(1,num); // turn around t ime
17

18 disp(” Graph i c a l Ana ly s i s− Wait ing Time vs Average
Wait ing Time o f S ch edu l i n g Algor i thms ”);

19

20 disp(” Burst t ime o f the g i v en Pro c e s s P1=10 , P2=2 ,
P3=8 , P4=6”);

21

22 disp( ’ Wait ing Time o f each Pro c e s s i n FCFS ’ ); //
d i s p l a y i n g the wa i t i n g t ime in FCFS

23

24 fcfs = firstcomefirstserve(num ,bt,wt,tat) //
Ca l l i n g f i r s t come f i r s t s e r v e f u n c t i o n

25

26

27 disp( ’ Wait ing t ime o f each Pro c e s s i n SJF ’ ); //
d i s p l a y i n g the Wait ing t ime o f each Pro c e s s i n
SJF
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28 sjf = shortestjobfirst(num ,bt ,wt,tat) // Ca l l i n g
s h o r t e s t j ob f i r s t f u n c t i o n

29

30

31 disp( ’ Wait ing Time o f each Pro c e s s i n Round Robin ’ );
// d i s p l a y i n g the Wa i t i t i n g Time o f each Pro c e s s

i n Round Robin
32

33 rr= roundrobin(num ,bt,wt,tat) // Ca l l i n g
Round Robin f u n c t i o n

34

35 /* constructing a rows for graphical representation */

36

37 scf (1);

38

39 y = [0 ,10 ,20 ,30 ,40];

40

41 x=[1,2,3,4,5]

42 avg =

[0 ,16 ,12;10 ,0 ,5;12 ,8 ,15;20 ,2 ,15;10.5 ,6.5 ,11.75];

43

44 /* Matrix avg is set of values obtained from waiting

time for each algorithm FCFS , SJF , RR

respectively */

45

46 xtitle( ’ G raph i c a l Ana l y s i s : Wait ing Time Vs Average
Wait ing Time ’ , ’ P r o c e s s ’ , ’ Wait ing t ime ’ );

47

48 bar(x,avg);

49

50 legend(”FCFS”,”SJF”,”RR”);

check Appendix AP 14 for dependency:

rr_wt_awt.sci

check Appendix AP 13 for dependency:

sjf_wt_awt.sci
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Experiment: 4

Graphical Analysis with
turn-around time & Average
turnaround time of CPU
Scheduling Algorithms using
Scilab

check Appendix AP 12 for dependency:

fcfs_tat_atat.sci

Scilab code Solution 4.0 Analysis TAT and ATAT

1 clear;

2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4
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Figure 4.1: Analysis TAT and ATAT
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5 // In t h i s a n a l y s i s , some common s c h e du l i n g
a l g o r i t hms l i k e F i r s t Come F i r s t Se rve (FCFS) ,
S h o r t e s t Job F i r s t ( SJF ) and Round Robin (RR)
Schedu l i n g a r e s t ud i e d and r ev i ewed on the b a s i s
o f t h e i r Turn Around Time and Average Turn Around
Time

6

7

8 // Func t i on s to be l oaded
9 exec(” f c f s t a t a t a t . s c i ”); // f c f s t a t a t a t . s c i

dependency f i l e f o r FCFS Schedu l i n g
10 exec(” s j f t a t a t a t . s c i ”); // s j f t a t a t a t . s c i

dependency f i l e f o r SJF Schedu l i n g
11 exec(” r r t a t a t a t . s c i ”); // r r t a t a t a t . s c i

dependency f i l e f o r RR Schedu l i n g
12

13 num =4; //no o f p r o c e s s e s P1 , P2 , P3 , P4
14 bt=[10 2 8 6]; // Sample bu r s t t ime
15 wt=zeros(1,num); // wa i t i n g t ime
16 tat=zeros(1,num); // turn around t ime
17

18 disp(” Graph i c a l Ana l y s i s with Turn−Around Time &
Average Turn−Around Time o f CPU us i ng Sc iLab ”);

19 disp(” Burst t ime o f the g i v en Pro c e s s P1=10 , P2=2 ,
P3=8 , P4=6”);

20

21 disp( ’ Turn Around Time o f each Pro c e s s i n FCFS ’ ); //
d i s p l a y i n g the Turn Around t ime in FCFS

22

23 fcfs = firstcomefirstserve(num ,bt,wt,tat) //
Ca l l i n g f i r s t come f i r s t s e r v e f u n c t i o n

24

25

26 disp( ’ Turn Around Time o f each Pro c e s s i n SJF ’ ); //
d i s p l a y i n g the Turn Around t ime o f each Pro c e s s
i n SJF

27 sjf = shortestjobfirst(num ,bt ,wt,tat) // Ca l l i n g
s h o r t e s t j ob f i r s t f u n c t i o n

16



28

29

30 disp( ’ Turn Around Time o f each Pro c e s s i n Round
Robin ’ ); // d i s p l a y i n g the Turn Around Time o f
each Pro c e s s i n Round Robin

31

32 rr= roundrobin(num ,bt,wt,tat) // Ca l l i n g
Round Robin f u n c t i o n

33

34 /* constructing a rows for graphical representation */

35

36 scf (1);

37

38 y = [0 ,10 ,20 ,30 ,40];

39

40 x=[1,2,3,4,5]

41 avg =

[10 ,26 ,22;12 ,2 ,7;20 ,16 ,23;26 ,8 ,21;17 ,13 ,18.25];

42

43 /* Matrix avg is set of values obtained from Turn

Around time for each algorithm FCFS , SJF , RR

respectively */

44

45 xtitle( ’ G raph i c a l Ana l y s i s with Turn−Around Time &
Average Turn−Around Time o f CPU us i ng Sc iLab ’ ,”
Pro c e s s ”,”Turn Around Time”);

46

47

48 bar(x,avg);

49

50 legend(”FCFS”,”SJF”,”RR”);

check Appendix AP 11 for dependency:

rr_tat_atat.sci

check Appendix AP 10 for dependency:

sjf_tat_atat.sci
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Experiment: 5

Round Robin (RR)
Pre-emptive CPU Scheduling
using Scilab

check Appendix AP 9 for dependency:

display_rr.sci

Scilab code Solution 5.0 Round Robin Scheduling

1 clear;

2 clc;

3

4 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

5

6 // Round Robin (RR) i s a pre−empt ive s c h e du l i n g
a l g o r i t hm . The CPU i s s h i f t e d to the next p r o c e s s
a f t e r f i x e d i n t e r v a l time , which i s c a l l e d t ime

quantum/ t ime s l i c e .
7
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8 // Func t i on s to be l oaded
9 exec(” roundrob in new . s c i ”);// dependency f i l e

roundrob in new . s c i
10 exec(” d i s p l a y r r . s c i ”);// dependency f i l e f o r d i s p l a y

f u n c t i o n
11

12 disp(” ROUND ROBIN SCHEDULING
”)

13

14 at = [0 1 2 3]; // De f i n i n g sample A r r i v a l Time
15 bt = [9 5 3 4]; // De f i n i n g sample Burst Time
16 n=size(at);

17

18 disp(” Sample Quantum Time= 5 ”)
19 mprintf(”\n”)
20 q = input(” Enter Quantum Time : ”);
21 disp(” Pro c e s s Turnaround t ime

Wait ing t ime ”);
22

23 // Ca l l i n g Round Robin f u n c t i o n
24 rr = roundrobin(q,n,at,bt);

25

26 // d i s p (” P ro c e s s Turnaround t ime
Wait ing t ime ”) ;

check Appendix AP 8 for dependency:

roundrobin_new.sci
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Experiment: 6

Comparison of Various
Partition Allocation
Algorithms using Scilab

check Appendix AP 5 for dependency:

best_fit_func.sci

check Appendix AP 4 for dependency:

display_func.sci

check Appendix AP 3 for dependency:

first_fit_func.sci

Scilab code Solution 6.0 Comparison of Various Partition Allocation Al-
gorithms using Scilab

1 clear;

20



Figure 6.1: Comparison of Various Partition Allocation Algorithms using
Scilab
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2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4

5 // This expe r iment i s compare the v a r i o u s p a r t i t i o n
a l l o c a t i o n a l g o r i t hms used by the op e r a t i n g
system f o r memory a l l o c a t i o n

6 // 1 . F i r s t −F i t Memory A l l o c a t i o n 2 . Best−F i t
Memory A l l o c a t i o n 3 . Worst−F i t Memory A l l o c a t i o n

7

8 // l o a d i n g a l l the n e c e s s a r y f u n c t i o n s
9 exec(” f i r s t f i t f u n c . s c i ”);
10 exec(” b e s t f i t f u n c . s c i ”);
11 exec(” w o r s t f i t f u n c . s c i ”);
12 exec(” d i s p l a y f u n c . s c i ”);
13

14 // Example problem
15 p = [90 20 50 200]; // De f i n i n g sample P ro c e s s S i z e
16 b = [50 100 90 200 60]; // De f i n i n g sample Block S i z e
17

18

19 // Determin ing the number o f p r o c e s s e s and b l o c k s
20

21 size_process = size(p); // S i z e o f the p r o c e s s
a r r ay i s c a l c u l a t e d u s i n g s i z e ( ) f u n c t i o n

22 size_process = size_process (2);

23

24 size_block = size(b); // S i z e o f the b l o ck
a r r ay i s c a l c u l a t e d u s i n g s i z e ( ) f u n c t i o n

25 size_block = size_block (2);

26

27 /* calling the function , defined in first fit.sci ,

for first fit allocation */

28 ff_allot = firstFit(p,b,size_process ,size_block)

29

30 /* calling the function , defined in best fit.sci , for

best fit allocation */

31 bf_allot = bestFit(p, b, size_process , size_block)
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32

33 /* calling the function , defined in worst fit.sci ,

for worst fit allocation */

34 wf_allot = worstFit(p,b,size_process ,size_block);

35

36

37 ff_allotsize = zeros(1, size_process); //
f f a l l o t s i z e − s i z e o f the s e l e c t e d b l o c k s f o r
f i r s t f i t

38 bf_allotsize = zeros(1, size_process); //
b f a l l o t s i z e − s i z e o f the s e l e c t e d b l o c k s f o r
b e s t f i t

39 wf_allotsize = zeros(1, size_process); //
w f a l l o t s i z e − s i z e o f the s e l e c t e d b l o c k s f o r
wors t f i t

40

41 // s t o r i n g the a l l o c a t e d b l o ck s i z e f o r each p r o c e s s
a c c o r d i n g to the r e s p e c t i v e f i t s

42

43 for i=1: size_process

44 if ff_allot(i)~=0 then //
ch e ck i ng i f any b l o ck i s s e l e c t e d

45 ff_allotsize(i) = b(ff_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d b l o ck
f o r f i r s t f i t

46 else

47 ff_allotsize(i) = 0 //
s t o r e s i z e as 0 i f no b l o ck i s s e l e c t e d

48 end ,

49

50 if bf_allot(i)~=0 then //
ch e ck i ng i f any b l o ck i s s e l e c t e d

51 bf_allotsize(i) = b(bf_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d b l o ck
f o r b e s t f i t

52 else

53 bf_allotsize(i) = 0 //
s t o r e s i z e as 0 i f no b l o ck i s s e l e c t e d
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54 end ,

55

56 if wf_allot(i)~=0 then //
ch e ck i ng i f any b l o ck i s s e l e c t e d

57 wf_allotsize(i) = b(wf_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d b l o ck
f o r wors t f i t

58 else

59 wf_allotsize(i) = 0; //
s t o r e s i z e as 0 i f no b l o ck i s s e l e c t e d

60 end ,

61 end

62

63

64 // c o n s t r u c t i n g a matr ix ( y ) f o r g r a p h i c a l
r e p r e s e n t a t i o n o f f i r s t f i t , b e s t f i t and wors t
f i t

65

66 y= zeros(size_process ,3);

67

68 y(:,1) = ff_allotsize; // F i r s t f i t a l l o tmen t
s i z e

69 y(:,2) = bf_allotsize; // Best f i t a l l o tmen t
s i z e

70 y(:,3) = wf_allotsize; // Worst f i t a l l o tmen t
s i z e

71

72 bar(y) // p l o t t i n g a bar graph
73

74 xtitle(”Comparison o f Var i ous P a r t i t i o n A l l o c a t i o n
Algor i thm ”,” Pro c e s s Number”,”Block S i z e ”);

75 legend(” F i r s t F i t ” , ” Best F i t ”, ”Worst F i t ” );

76

77

78 // p r i n t i n g f i r s t f i t , b e s t f i t and wors t f i t a r r ay
79

80 mprintf(”Comparison o f Var i ous P a r t i t i o n A l l o c a t i o n
Algor i thms u s i n g S c i l a b \n\n”) // d i s p l a y i n g the
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t i t l e o f expe r iment
81 mprintf(”Ex : P r o c e s s s i z e P1=90 , P2=20 , P3=50 , P4

=200”); // d i s p l a y i n g
the sample P ro c e s s s i z e c o n s i d e r e d f o r the o f
expe r iment

82 mprintf(”\n Block or ho l e s i z e B1= 50 , B2= 100 ,
B3=90 , B4=200\n”); // d i s p l a y i n g
the sample Block s i z e c o n s i d e r e d f o r the o f
expe r iment

83

84 mprintf(”\nFIRST FIT : \ n”)
85 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no . Block

s i z e \n”)
86 display(ff_allot ,ff_allotsize ,size_process ,p)

// d i s p l a y i n g the p r o c e s s and b l o ck
a l l o c a t i o n by f i r s t f i t a r r ay

87

88 mprintf(”\nBEST FIT : \ n”)
89 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no . Block

s i z e \n”)
90 display(bf_allot ,bf_allotsize ,size_process ,p)

// d i s p l a y i n g the p r o c e s s and b l o ck
a l l o c a t i o n by b e s t f i t a r r ay

91

92

93 mprintf(”\nWORST FIT : \ n”)
94 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no . Block

s i z e \n”)
95 display(wf_allot ,wf_allotsize ,size_process ,p)

// d i s p l a y i n g the p r o c e s s and b l o ck
a l l o c a t i o n by wors t f i t a r r ay

check Appendix AP 2 for dependency:

worst_fit_func.sci
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Experiment: 7

Deadlock Avoidance using
Scilab

check Appendix AP 7 for dependency:

Deadlock.sci

Scilab code Solution 7.0 Banker Algorithm Deadlock Avoidance using Scilab

1 clear;

2 clc;

3

4 //The b a n k e r s a l g o r i t hm i s a r e s o u r c e a l l o c a t i o n
and dead l o ck avo idance a l g o r i t hm tha t t e s t s f o r
s a f e t y by s imu l a t i n g the a l l o c a t i o n f o r
p r ede t e rm ined maximum p o s s i b l e amounts o f a l l
r e s o u r c e s

5

6 // Load dependency f i l e
7 exec(”Deadlock . s c i ”);
8
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9 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

10 close;

11 n=5; // Number o f p r o c e s s e s
12 m=3; // Number o f r e s o u r c e s
13

14

15 disp(” B a n k e r s Algor i thm f o r Deadlock Avoidance ”)
16 mprintf(”\ nCons ide r Number o f P r o c e s s e s N=5 ,Number

o f r e s o u r c e s M=3\n”); // Number o f p r o c e s s e s and
Number o f r e s o u r c e s

17

18 mprintf(”\n A l l o c a t i o n a r e [ ] 0 1 0 ; 2 0 0 ; 3 0 2 ; 2 1
2 ; 0 0 2 ] ”); // Giv ing the p r o c e s s a l l o c a t i o n
v a l u e s

19 mprintf(”\nM=[7 5 3 ; 3 2 2 ; 9 0 2 ; 2 2 2 ; 4 3 3 ]\ n”); //
Giv ing the maximum va l u e s

20

21 disp( ’ Fo l l ow ing i s the SAFE Sequence s a t i s f i e s the
s a f e t y r equ i r emen t : ’ ); // Disp command p r i n t s the
s a f e s equence

22

23 Deadlock(n,m) // Funct ion c a l l o f Deadlock −
Bankers Algor i thm
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Experiment: 8

Process Synchronization
Techniques using Scilab

check Appendix AP 6 for dependency:

Process_Synch.sci

Scilab code Solution 8.0 Dekker Process Synchronization Techniques us-
ing Scilab

1 // //DEKKER’ S ALGORITHM////
2

3 clear;

4 clc;

5 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

6

7 exec(” Proc e s s Synch . s c i ”);
8

9

10 //Dekker ’ s a l g o r i t hm gua r an t e e s mutual e x c l u s i o n ,
f reedom from dead lock , and freedom from
s t a r v a t i o n .
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11 // In t h i s a l go r i thm , the p o s i t i o n o f each p r o c e s s i s
i n d i c a t e d with the v a r i a b l e s turn and f l a g .

12

13

14 // INITIALIZING THE VALUES
15 c1=1,c2=1,turn =1;

16 count0=0,count1=0,count =0;

17 i=0;

18 // Dea f u l t v a l u e s
19 limit =10; // Limit o f CS
20 a=1,b=1; //Time taken i n CS by both p r o c e s s
21

22

23 disp(” Pro c e s s S yn ch r on i z a t i o n u s i n g Dekkers
Algor i thm in S c i l a b ”);

24 mprintf(”\ nInput Ex : Time in CS f o r P1 i s 2 , P2 i s
3 , Tota l Time i s 9\n ”)

25 //INSTRUCTIONS TO PROCEED :
26 mprintf(” 1) P ro c e s s 1 e n t e r s \n”);
27 mprintf(” 2) P ro c e s s 2 e n t e r s \n”);
28 mprintf(” 3) Both p r o c e s s e n t e r s \n”);
29 mprintf(” 4) Ex i t \n”);
30 mprintf(”\n Enter t o t a l t ime r e qu i e d by Pro c e s s 1 i n

CS : ”)
31 a = input(” ”)
32 mprintf(” Enter t o t a l t ime r e qu i e d by Pro c e s s 2 i n

CS : ”)
33 b = input(” ”)
34 mprintf(” Enter t o t a l t ime l i m i t o f CS : ”)
35 limit = input(” ”)
36 //Psyn ( a , b , l i m i t ) ;
37 Psyn(a,b,limit)

38 //FUNCTION TO IDENTIFY WHICH PROCESS ENTERS NOW
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Experiment: 9

Memory Management using
Scilab

check Appendix AP 5 for dependency:

best_fit_func.sci

check Appendix AP 4 for dependency:

display_func.sci

check Appendix AP 3 for dependency:

first_fit_func.sci

Scilab code Solution 9.0 Memory Management using Scilab First Fit Best
Fit and Worst Fit

1 clear;
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2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4 //The memory to the p r o c e s s o r w i l l be a l l o c a t e d i n
s e v e r a l b l o c k s o f memory , i n o rd e r to make a
p e r f e c t l y o r g an i z e d a l l o c a t i o n between the memory
b l o c k s and p ro c e s s , t h r e e d i f f e r e n t p a r t i t i o n

and a l l o c a t i o n a l g o r i t hms a r e used 1 . F i r s t −F i t
Memory A l l o c a t i o n 2 . Best−F i t Memory A l l o c a t i o n
3 . Worst−F i t Memory A l l o c a t i o n

5

6 /* loading all the necessary functions */

7 exec(” f i r s t f i t f u n c . s c i ”);
8 exec(” b e s t f i t f u n c . s c i ”);
9 exec(” w o r s t f i t f u n c . s c i ”);
10 exec(” d i s p l a y f u n c . s c i ”);
11

12 mprintf(”Memory Management F i r s t f i t , Best F i t and
Worst F i t A l l o c a t i o n \n ”);

13 mprintf(”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n ”);

14

15 mprintf(”Ex : P r o c e s s s i z e P1=212 , P2=417 , P3=112 , P4
=426”);

16 mprintf(”\n Block or ho l e s i z e B1= 100 , B2= 500 ,
B3=200 , B4=300 , B5=600\n”);

17

18 /* Example problem */

19 p = [212 ,417 ,112 ,426]; // p r o c e s s s i z e
20 b = [100 ,500 ,200 ,300 ,600]; // b l o ck or ho l e s i z e
21

22 disp(” S e l e c t the Option : ”);
23 mprintf(” 1−F i r s t F i t \n”);
24 mprintf(” 2−Best F i t \n”)
25 mprintf(” 3−Worst F i t \n”);
26

27 /*
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28 Determining the number of processes and blocks

29 */

30 size_process = size(p);

31 size_process = size_process (2);

32

33 size_block = size(b);

34 size_block = size_block (2);

35

36 n1=input(””);
37 if(n1==1) then

38 // f i r s t f i t ( ) ;
39 /* calling the function , defined in first fit.sci ,

for first fit allocation */

40 ff_allot = firstFit(p,b,size_process ,size_block)

41 end

42 if(n1==2) then

43 /* calling the function , defined in best fit.sci , for

best fit allocation */

44 bf_allot = bestFit(p, b, size_process ,

size_block)

45

46 end

47 if(n1==3) then

48 // w o r s t f i t ( ) ;
49 /* calling the function , defined in worst fit.sci ,

for worst fit allocation */

50 wf_allot = worstFit(p,b,size_process ,size_block);

51

52 end

53

54 /*

55 ff_allotsize - size of the selected blocks for first

fit

56 bf_allotsize - size of the selected blocks for best

fit

57 wf_allotsize - size of the selected blocks for worst

fit

58 */
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59 ff_allotsize = zeros(1, size_process);

60 bf_allotsize = zeros(1, size_process);

61 wf_allotsize = zeros(1, size_process);

62

63 /* storing the allocated block size for each process

according to the respective fits */

64 for i=1: size_process

65 if(n1==1) then

66

67 if ff_allot(i)~=0 then // ch e ck i ng i f any
b l o ck i s s e l e c t e d

68 ff_allotsize(i) = b(ff_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d
b l o ck f o r f i r s t f i t

69 else

70 ff_allotsize(i) = 0 // s t o r e s i z e as 0
i f no b l o ck i s s e l e c t e d

71 end ,

72 end

73

74 if(n1==2) then

75 if bf_allot(i)~=0 then // ch e ck i ng i f any
b l o ck i s s e l e c t e d

76 bf_allotsize(i) = b(bf_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d
b l o ck f o r b e s t f i t

77 else

78 bf_allotsize(i) = 0 // s t o r e s i z e as 0
i f no b l o ck i s s e l e c t e d

79 end ,

80 end

81 if(n1==3) then

82 if wf_allot(i)~=0 then // ch e ck i ng i f any
b l o ck i s s e l e c t e d

83 wf_allotsize(i) = b(wf_allot(i)); //
s t o r i n g the s i z e o f the s e l e c t e d
b l o ck f o r wors t f i t

84 else
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85 wf_allotsize(i) = 0; // s t o r e s i z e as 0
i f no b l o ck i s s e l e c t e d

86 end ,

87 end

88 end

89 /*

90 printing first fit , best fit and worst fit array

91 */

92 if(n1==1) then

93 mprintf(”\nFIRST FIT : \ n”)
94 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no . Block

s i z e \n”)
95 display(ff_allot ,ff_allotsize ,size_process ,p)

96 end

97 if(n1==2) then

98

99 mprintf(”\nBEST FIT : \ n”)
100 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no .

Block s i z e \n”)
101 display(bf_allot ,bf_allotsize ,size_process ,p)

102 end

103 if(n1==3) then

104

105 mprintf(”\nWORST FIT : \ n”)
106 mprintf(” Pro c e s s no . \ tP r o c e s s s i z e \ tB lock no .

Block s i z e \n”)
107 display(wf_allot ,wf_allotsize ,size_process ,p)

108 end

check Appendix AP 2 for dependency:

worst_fit_func.sci
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Experiment: 10

Page Replacement Algorithm
using Scilab

check Appendix AP 1 for dependency:

PageReplacement.sci

Scilab code Solution 10.0 Optimal Page Replacement Algorithm using
Scilab

1 clear;

2 clc;

3 //WINDOWS 10 64−BIT OS , S c i l a b and t oo l b ox v e r s i o n s
6 . 1 . 0 .

4

5 // In Optimal page r ep l a c ement a l go r i thm , the page
tha t w i l l not be used f o r the l o n g e s t p e r i o d o f

t ime i s r e p l a c e d to make space f o r the r e qu e s t e d
page .

6

7 // Func t i on s to be l oaded
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8 exec(”PageReplacement . s c i ”); // PageReplacement . s c i
dependency f i l e

9

10 mprintf(” Optimal Page Replacement Algor i thm us i ng
S c i l a b \n”)

11

12 mprintf(” Sample Input : No . o f f r ames =4 , No . Page=13
”)

13 mprintf(”\n”)
14 mprintf(”Sample Page Re f e r en c e S t r i n g

7 , 0 , 1 , 2 , 0 , 3 , 0 , 4 , 2 , 3 , 0 , 3 , 2 ”)
15 frames=cell (10); //Read Frames
16 pages=cell (30); //Read Pages
17 temp=cell (10); //Read temp
18 noOfFrames =0;

19 noOfPages =0;

20

21 mprintf(”\n”)
22 mprintf( ’ Enter No Of Frames ’ ); //Write to command

window
23 mprintf(”\n”)
24 noOfFrames=input(””); // Giv ing the no . o f . Frames

Value
25

26 mprintf( ’ Enter No Of Pages ’ ); //Write to command
window

27 noOfPages=input(””); // Giv ing the no . o f . Pages
Value

28 flag1 =0; // S e t t i n g a Flag
29 flag2 =0; // S e t t i n g a Flag
30 flag3 =0; // S e t t i n g a Flag
31 faults =0; //Read f a u l t s
32 maximum =0; // S e t t i n g i t to a marker va l u e
33

34 mprintf(”\n”)
35 mprintf( ’ Enter Page Re f e r en c e Values ’ ); //Write to

command window
36

36



37 for n=1: noOfPages // Giv ing the f i r s t r e f e r e n c e va lu e
i n f i r s t f rame

38 // mpr in t f (” Enter Page r e f e r e n c e %d” , n )
39 pages{n}=input(””); // P r i n t i n g the va lu e i n

page
40 end

41

42 pagereplacement(noOfFrames ,noOfPages ,pages) //
Ca l l i n g page r ep l a c ement f u n c t i o n
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Appendix

Scilab code AP 1
1 function []= pagereplacement(noOfFrames ,noOfPages

,pages) // //Page r ep l a c ement f u n c t i o n
2

3 for n=1: noOfFrames // Giv ing the no . o f Frames
4 frames{n}=-1;

5 end

6

7 for i=1: noOfPages // No . o f Pages
8 flag1 =0;

9 flag2 =0;

10 for j=1: noOfFrames

11 if(frames{j}== pages{i})

12 flag1 =1;

13 flag2 =1;

14 break;

15 end

16 end

17 if(flag1 ==0)

18 for j=1: noOfFrames

19 if(frames{j}==-1)

20 faults=faults +1;

21 frames{j}= pages{i};

22 flag2 =1;

23 break;

24 end

25 end
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26 end

27 if(flag2 ==0)

28 flag3 =0;

29 for j=1: noOfFrames

30 temp{j}=-1;

31 for k=i+1: noOfPages

32 if(frames{j}== pages{k}) //Check the
f rames and pages a r e f i l l e d

33 temp{j}=k

34 break;

35 end

36 end

37 end

38

39 // For l oop f o r i d e n t i f y i n g page f a u l t s
40 for j=1: noOfFrames

41 if(temp{j}==-1)

42 pos=j;

43 flag3 =1;

44 break;

45 end

46 end

47 if(flag3 ==0)

48 maximum=temp {0};

49 pos =0;

50 for j=1: noOfFrames

51 if(temp{j}>maximum)

52 maximum=temp{j}; //Check the
va lu e i s l ong p e r i o d use or
not

53 pos=j;

54 end

55 end

56 end

57 frames{pos}=pages{i}

58 faults=faults +1; //Check next va lu e i s
Equal or to change the p o s i t i o n

59 end
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60 end

61 faults=faults -1;

62 mprintf(”No Of Page Fa l u t s %d\n”,faults); //Write
Page Fau l t s to command window

63

64 endfunction

Optimal page replacement

Scilab code AP 2
1 //Worst−F i t Memory A l l o c a t i o n , the o p e r a t i n g

system s e a r c h e s the e n t i r e l i s t and a l l o c a t e s the
l a r g e s t a v a i l a b l e h o l e to the p r o c e s s .

2 // I f a l a r g e p r o c e s s comes at a l a t e r s tage , then
memory may not have space to accommodate i t .

3

4 function [wf_allot ]= worstFit(p,b,size_process ,

size_block)

5

6 // De c l a r i n g wors t f i t f l a g a r r ay ( w f f l a g ) which i s
used f o r ma in t a i n i ng the s t a t u s o f each b l o ck (
f r e e or busy )

7

8 wf_allot = zeros(1, size_process);

// De c l a r i n g wors t f i t a r r ay ( w f a l l o t )
9 wf_flag = zeros(1, size_block);

10

11 // For l oop f o r a l l o c a t i n g b l o c k s a c c o r d i n g to wors t
f i t

12

13 for i=1: size_process

14 k = -1; // k − i ndex
p o s i t i o n o f the l a r g e s t b l o ck which can
accommodate a p r o c e s s , i n i t i a l l y s e t to
−1

15 for j=1: size_block

16 if p(i)<=b(j) && wf_flag(j) == 0 then //
i f p r o c e s s s i z e i s l e s s than b l o ck
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s i z e and b l o ck i s f r e e
17 if k==-1 then

18 k = j; // update k with
index p o s i t i o i n o f the b l o ck

19 elseif(b(k)<b(j)) // i f t h e r e i s a
l a r g e r b l o ck which can

accommodate the p r o c e s s
20 k = j; // update k with the

index p o s i t i o n o f the l a r g e r
b l o ck

21 end ,

22 end ,

23 end

24 if(k==-1)

25 wf_allot(i)=0; // i f no b l o ck can
accomodate the p r o c e s s , s e t a l l o t t e d
b l o ck number as 0

26 else

27 wf_allot(i) = k; // s t o r e the s e l e c t e d
index i n the wors t f i t a r r ay i n the
index p o s i t i o n i ( p r o c e s s number )

28 wf_flag(k) = 1; // s e t the s t a t u s o f the
s e l e c t e d b l o ck as busy

29 end ,

30 end

31 endfunction

Worst Fit Memory Allocation

Scilab code AP 31 // F i r s t −F i t Memory A l l o c a t i o n
a l g o r i t hm scan s the memory and whenever i t f i n d s
the f i r s t b i g enough ho l e to s t o r e a p r o c e s s ,

2 // i t s t o p s s c ann ing and l o ad s the p r o c e s s i n t o tha t
ho l e / b l o ck .

3

4 function [ff_allot ]= firstFit(p,b,size_process ,

size_block)

5
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6

7 // De c l a r i n g f i r s t f i t f l a g a r r ay ( f f f l a g ) which i s
used f o r ma in t a i n i ng the s t a t u s o f each b l o ck (
f r e e or busy )

8

9 ff_allot = zeros(1, size_process); //
De c l a r i n g f i r s t f i t a r r ay ( f f a l l o t )

10 ff_flag = zeros(1, size_block);

11

12 // For l oop f o r a l l o c a t i n g b l o c k s a c c o r d i n g to
f i r s t f i t

13

14 for i=1: size_process

15 for j=1: size_block

16 if p(i) <= b(j) && ff_flag(j)==0 then

// i f p r o c e s s s i z e i s l e s s than b l o ck
s i z e and b l o ck i s f r e e

17 ff_allot(i) = j;

// s t o r e index p o s i t i o n o f the b l o ck
i n f f a l l o t i n the index p o s i t i o n i (
p r o c e s s number )

18 ff_flag(j) = 1;

// s e t s t a t u s as busy
19 break

20 end ,

21 end

22 end

23 endfunction

First Fit Memory Allocation

Scilab code AP 4
1 // D i sp l ay Funct ion : I t p r i n t s a l l r e q u i r e d d e t a i l s

such as P ro c e s s no . , P r o c e s s s i z e , Block no . ,
2 // Block s i z e f o r F i r s t Fit , Best F i t and Worst F i t .
3

4 function display(allot ,allotsize ,size_process ,p)

5 for i=1: size_process
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6 if allot(i)==0 then

7 mprintf(”P%d\ t \t%d\ t Not a l l o c a t e d
−\n”,i,p(i)) // D i sp l ay
the P ro c e s s number tha t cou ld not
a l l o c a t e d

8 else

9 mprintf(”P%d\ t \t%d\ t \tB%d\ t %d\n”,i,p(i
),allot(i),allotsize(i)) // D i sp l ay
the P ro c e s s number with a l l o c a t e d
Block number

10 end ,

11 end

12 endfunction

Display Function

Scilab code AP 51 // Best F i t Memory A l l o c a t i o n , the
o p e r a t i n g system s e a r c h e s the whole memory
a c c o r d i n g to the s i z e o f the g i v en p r o c e s s

2 // and a l l o c a t e s i t to the sm a l l e s t h o l e which i s b i g
enough to accommodate i t .

3

4

5 function [bf_allot ]= bestFit(p,b,size_process ,

size_block)

6

7

8 // d e c l a r i n g b e s t f i t f l a g a r r ay ( b f f l a g ) which
i s used f o r ma in t a i n i ng the s t a t u s o f each b l o ck (
f r e e or busy )

9

10 bf_allot = zeros(1, size_process); //
d e c l a r i n g b e s t f i t a r r ay ( b f a l l o t )

11 bf_flag = zeros(1, size_block);

12

13 // For l oop f o r a l l o c a t i n g b l o c k s a c c o r d i n g to
b e s t f i t

14 for i=1: size_process
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15 k = -1; // k −
i ndex p o s i t i o n o f the sm a l l e s t b l o ck
which can accommodate a p r o c e s s ,
i n i t i a l l y s e t to −1

16 for j=1: size_block

17 if p(i)<=b(j) && bf_flag(j) == 0 then //
i f p r o c e s s s i z e i s l e s s than b l o ck

s i z e and b l o ck i s f r e e
18 if k==-1 then

19 k = j; // update k
with index p o s i t i o n o f the
b l o ck

20 elseif(b(j)<b(k)) // i f t h e r e
i s a sma l l e r b l o ck which can
accommodate the p r o c e s s

21 k = j; // update k
with the index p o s i t i o n o f
the sma l l e r b l o ck

22 end ,

23 end ,

24 end

25 if(k==-1)

26 bf_allot(i)=0; // i f no
b l o ck can accomodate the p r o c e s s , s e t
a l l o t t e d b l o ck number as 0

27 else

28 bf_allot(i) = k; // s t o r e the
s e l e c t e d index i n the b e s t f i t a r r ay
i n the index p o s i t i o n i ( p r o c e s s
number )

29 bf_flag(k) = 1; // s e t the
s t a t u s o f the s e l e c t e d b l o ck as busy

30 end ,

31 end

32 endfunction

Best Fit Memory Allocation
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Scilab code AP 6
1 // In t h i s program D e k k e r s Algor i thm i s used ,

to en su r e one p r o c e s s e n t e r s the c r i t i c a l s e c t i o n
at a t ime wh i l e the o th e r p r o c e s s e s need to wa i t
f o r the f i r s t one to l e a v e the c r i t i c a l s e c t i o n .

2

3 function [] = Psyn(a,b,limit)

4 while (i<= limit)

5 printf(”\n”)
6 x = input(”SELECT THE OPTION : ”)
7

8 //PROCESS 1 ENTERS
9 if x==1 then // Option 1

10 c1=0;

11 while c2==0

12 if turn ==2 then

13 c1=1;

14 while turn ==2 //do noth ing
15 end

16 c1=0;

17 end

18 end

19 // c r i t i c a l s e c t i o n
20 count0=count0+a;

21 i=i+a;

22 // y i e l d
23 c1=1;

24 turn =2;

25 // rema inder s e c t i o n
26 if (count0 >limit) | (i>limit) then

27 printf(” Exceeds the l i m i t o f CS\n”)
28 printf(”END\n”);
29 i = 100;

30 else

31 if(a>0)

32 printf(” Pro c e s s P1 Ente r s the
C r i t i c a l s e c t i o n ”);

33 printf(”\ nTota l Time o f P1 in
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C r i t i c a l S e c t i o n :%d\n”,count0);
34 end

35 printf(”\ n I t i s the turn p r o c e s s P2\n
”);

36 end

37 end

38

39 //PROCESS 2 ENTERS
40 if x==2 then // Option 2
41 c2=0;

42 while c1==0

43 if turn ==1

44 c2=1;

45 while turn ==1 //do noth ing
46 end

47 c2=0;

48 end

49 end

50 // c r i t i c a l s e c t i o n
51 count1=count1+b;

52 i=i+b;

53 // y i e l d
54 c2=1;

55 turn =1;

56 // rema inder s e c t i o n
57 if (count1 >limit) | (i>limit) then

58 printf(” Exceeds the l i m i t o f CS\n”)
59 printf(”END\n”);
60 i = 100;

61 else

62 if(b>0)

63 printf(” Pro c e s s P2 Ente r s the
C r i t i c a l s e c t i o n ”);

64 printf(”\ nTota l Time o f P2 in
C r i t i c a l S e c t i o n :%d\n”,count1);

65 end

66 printf(”\ n I t i s the turn p r o c e s s P1\n
”);

46



67 end

68 end

69

70 //BOTH PROCESS ENTER AT SAME TIME Option 3
71 if x==3 then

72 printf(”\nBoth p r o c e s s cant e n t e r at same
t ime in C r i t i c a l S e c t i o n \n”);

73 if i>limit then

74 printf(”END\n”);
75 i = 100;

76 end

77 end

78

79 //END f o r OTHER CONDITIONS Option 4
80 if x==4 then

81 printf(”\nEND\n”);
82 i = 100;

83 end

84 end

85 endfunction

Dekker Algorithm

Scilab code AP 71 // Deadlock − Bankers Algor i thm
2

3 function [] = Deadlock(n,m)

4

5 // P0 P1 P2 P3 and P4 a r e the p r o c e s s names .
6 A=[0 1 0;2 0 0;3 0 2;2 1 2;0 0 2]; // Giv ing the

p r o c e s s a l l o c a t i o n v a l u e s
7 M=[7 5 3;3 2 2;9 0 2;2 2 2;4 3 3]; // Giv ing the

maximum va l u e s
8 L=[3 3 2]; // This g i v e s the a v a i l a b l e v a l u e s
9 ind =0;

10 ans1=list();

11 z=1;

12 f=list();

13
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14 for k=1:5 // I t e r a t i n g the v a l u e s f o r a l l the 5
p r o c e s s e s

15 f(k)=0;

16 end

17

18 for i=1:5 // I t e r a t i n g the v a l u e s f o r a l l the
p r o c e s s e s

19 for j=1:3 // I t e r a t i n g the va lu e f o r a l l the
p r o c e s s e s

20 need(i,j)= M(i,j) - A(i,j); // Need i s
c a l c u l a t e d by s ub t a c t i n g the maximum and
a v a i l a b e r e s o u r c e s

21

22 end;

23

24 end

25 y=0;

26 for k=1:5 // I t e r a t i n g f o r a l l the 5 p r o c e s s e s
27 for i=1:5

28 if(f(i)==0) then

29 flag = 0; // Flag va lu e i s s e t z e r o
30 for j=1:3 // I t e r a t i n g f o r a l l the r e s o u r c e s
31 if (need(i,j) > L(j)) then // I f the

need va lu e i s more than the Ava i l a b l e
r e s o u r c e s , the r e q u e s t cannot be

g rant ed
32 flag =1; // Then the f l a g i s s e t to 1
33 break; // The l oop b r eak s he r e
34 end

35 end

36 if (flag ==0) then // I f the c o n d i t i o n i s
s a t i s f i e d the next p r o c e s s i s checked
s i m i l a r l y

37 ans1(z)=i;

38 z=z+1;

39

40 for y=1:3

41 L(y)= L(y)+A(i,y); // I f the c o n d i t i o n i s
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s a t i s f i e d the a v a i l a b l e v a l u e i s
updated by adding a v a i l a b l e va l u e and
the a l l o c a t e d r e s o u r c e s o f the

p a r t i c u l a r p r o c e s s
42 end

43 f(i)=1;

44 end

45 end

46 end

47 end

48

49 // For l oop f o r d i s p l a y i n g SAFE Sequence which
s a t i s f i e s the s a f e t y

50 for i=1:5

51 ans1(i)=ans1(i) -1;

52 end

53 for i=1:5

54

55 mprintf( ’ <P%d> , ’ ,ans1(i));
56

57 end;

58 endfunction

Deadlock Bankers Algorithm

Scilab code AP 81 // Funct ion f o r RoundRobin Algor i thm
2

3 function [tat ,wait_time ]= roundrobin(q,n,at ,bt)

4

5 remain = n// S t o r i n g no o f p r o c e s s i n a v a r i a b l e
c a l l e d n

6

7 wait_time =0;

8 tat =0;

9

10 quantum_time=q;

11 // d i s p (” P ro c e s s Turnaround t ime
Wait ing t ime ”) ;
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12

13 time =0; // comp l e t i on t ime i s i n i t i a l l y s e t to z e r o
14

15 for i=1:4

16 rt(i)=bt(i);

17 end;

18

19 // runn ing the p r o c e s s e s f o r s p e c i f i e d quantum
20 while remain ~=0

21 for i=1:4

22

23 if rt(i)<=quantum_time & rt(i)>0 then //
e x e c u t e s i f bu r s t t ime i s g r e a t e r than 0
and l e s s e r than quantum time

24 time=time+rt(i);// update comp l e t i on
t ime

25 rt(i)=0;

26 flag =1;

27 elseif rt(i)>0 then

28 rt(i)=rt(i)-quantum_time;// update
bu r s t t ime

29 time=time+quantum_time;

30 end;

31 if rt(i)==0 & flag ==1 then // e x e c u t e s i f
bu r s t t ime i s equa l to 0 and f l a g=1

32 remain = remain -1;

33 mprintf( ’ \n P%i\ t \ t \ t %i\ t \ t \ t %i ’ ,i
,time -at(i),time -at(i)-bt(i));

34 tat=tat+time -at(i);//Turnaround t ime
= comp l e t i on time−a r r i v a l t ime

35 wait_time = wait_time+time -at(i)-bt(

i);//Wait ing t ime = turnaround−
bu r s t t ime

36 flag =0;

37 end;

38 if i==n-1

39 i=1;

40 elseif at(i)<=time then // e x e c u t e s when
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a r r i v a l t ime i s l e s s e r than / equa l to
comp l e t i on t ime

41 i=1;

42 else

43 i=1;

44 end;

45 end;

46 end;

47

48 // d i s p l a y f u n c n c t i o n c a l l
49 d = displayfunc(tat ,wait_time); // Average

D i s p l a y i n g turn around t ime and Average wa i t i n g
t ime

50

51 endfunction

Round Robin Scheduling New

Scilab code AP 9
1 function [atat ,awt] = displayfunc(tat ,wait_time)

2 awt=wait_time *1.0/4; // Tota l wa i t t ime /no o f
p r o c e s s e s g i v e s ave rage wa i t i n g time ,
s i m i l a r l y avg turnaround t ime i s c a l c u l a t e d

3 atat=tat *1.0/4;

4

5 mprintf(”\n”)
6

7 disp(”Average Wait ing Time u s i n g RR= ”); //
D i s p l a y i n g Average wa i t i n g t ime

8 disp(awt);

9

10 disp(”Average Turnaround Time u s i n g RR= ”); //
D i s p l a y i n g Average Turnaround t ime

11 disp(atat);

12 endfunction

Display Function of Round Robin
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Scilab code AP 101 // SJF Schedu l i n g f u n c t i o n
2

3 function [tat ,wait_time ]= shortestjobfirst(num ,btime ,

wtime ,tatime)

4 total =0; // t o t a l wa i t i n g t ime
5 total2 =0;

6 n=num;

7 ptime=btime;

8 process =[1 2 3 4]; // p r o c e s s i d
9 fd = %io(2);

10

11 for i=1:1:n-1 // s o r t i n g the p r o c e s s e s i n terms o f
p r o c e s s t imes

12 for j=i+1:1:n

13 if(ptime(i)>ptime(j))

14 temp=ptime(i);

15 ptime(i) = ptime(j);

16 ptime(j) = temp;

17 temp = process(i);

18 process(i) = process(j);

19 process(j) = temp;

20 end

21 end

22

23 end

24

25 wtime (1) = 0;

26 for i=2:1:n

27 wtime(i) = wtime(i-1)+ptime(i-1); // wa i t t ime
o f a p r o c e s s i s sum o f wa i t t ime o f p r o c e s s
b e f o r e i t and p r o c e s s t ime o f p r o c e s s b e f o r e
i t

28 total = total + wtime(i); // f i n d i n g
t o t a l wa i t i n g t ime

29 end

30

31 tatime (1) = 0;

32 for i=1:1:n
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33 tatime(i)=ptime(i)+wtime(i); // turn around
t ime=bur s t t ime +wai t t ime

34 total2=total2+tatime(i); // t o t a l
turn around t ime

35 end

36

37 avg1 = total2/n; // f i n d i n g
ave rage t ime

38

39 for i=1:1:n

40 mfprintf(fd, ’ P%d i s %d ’ ,process(i),tatime(i))
;

41 end

42

43 mfprintf(fd, ’ \n Average Turn−Around Time in SJF
%. 2 f ’ ,avg1);

44

45 endfunction

SJF algorithm for Turn Around Time and Average Turn Around Time cal-
culation

Scilab code AP 111 // Round Robin Schedu l i n g f u n c t i o n
2

3 function [tat ,wait_time ]= roundrobin(num ,btime ,wtime ,

tatime)

4 b=0;

5 t=0;

6 n=num

7 q=5; //quantum time
8 wtime=zeros(1,n); // wa i t i n g t ime
9 fd = %io(2);

10 rtime=btime // bu r s t t ime
11

12 // For l oop : runn ing the p r o c e s s e s f o r s p e c i f i e d
quantum

13

14 for i=1:1:n // runn ing the p r o c e s s e s f o r 1
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quantum
15 if(rtime(i)>=q)

16 for j=1:1:n

17 if(j==i)

18 rtime(i)=rtime(i)-q; // s e t t i n g
the r ema in ing t ime i f i t i s the
p r o c e s s s ch edu l ed

19 else if(rtime(j) >0)

20 wtime(j)=wtime(j)+q; //
i n c r emen t i n g wa i t t ime i f i t
i s not the p r o c e s s s ch edu l ed

21 end

22 end

23 end

24 else if(rtime(i) >0)

25 for j=1:1:n

26 if(j==i)

27 rtime(i)=0; // as the
r ema in ing t ime i s l e s s than

quantum i t w i l l run the p r o c e s s
and end i t

28 else if(rtime(j) >0)

29 wtime(j)=wtime(j)+rtime(i);

// i n c r emen t i n g wa i t t ime i f
i t i s not the p r o c e s s
s ch edu l ed

30 end

31 end

32 end

33 end

34 end

35 end

36 for i=1:1:n

37 if(rtime(i) >0) // i f r ema in ing t ime i s l e f t
s e t f l a g

38 flag =1;

39 end

40 end
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41 while(flag ==1) // i f f l a g i s s e t run the
above p r o c e s s aga in

42 flag =0;

43 for i=1:1:n

44 if(rtime(i)>=q)

45 for j=1:1:n

46 if(j==i)

47 rtime(i)=rtime(i)-q;

48 else if(rtime(j) >0)

49 wtime(j)=wtime(j)+q;

50 end

51 end

52 end

53 else if(rtime(i) >0)

54 for j=1:1:n

55 if(j==i)

56 rtime(i)=0;

57 else if(rtime(j) >0)

58 wtime(j)=wtime(j)+rtime(

i);

59 end

60 end

61 end

62 end

63 end

64 end

65 for i=1:1:n

66 if(rtime(i) >0)

67 flag =1;

68 end

69 end

70 end

71

72 // For l oop : c a l c u l a t i n g turn around t ime f o r each
p r o c e s s

73 for i=1:1:n

74 tatime(i)=wtime(i)+btime(i); //By adding
wa i t i n g t ime and bu r s t t ime
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75 end

76 for i=1:1:n

77 b=b+wtime(i);

78 t=t+tatime(i);

79 end

80

81 for i=1:1:n

82 mfprintf(fd, ’ P%d i s %d ’ ,i,tatime(i));
83 end

84

85 // d i s p l a y i n g the Average Turn−Around Time in RR
86

87 mfprintf(fd, ’ \n Average Turn−Around Time in RR
%. 2 f ’ ,t/n);

88

89 endfunction

Round Robin Scheduling for Turn Around Time and Average Turn Around
Time calculation

Scilab code AP 121 function [tat ,wait_time ]=

firstcomefirstserve(num ,btime ,wtime ,tatime) //
Funct ion d e f i n t i o n o f f i r s t come f i r s t s e r v e

2

3 t1=0; // i n t i a l i z i n g t ime t1=0 f o r
t o t a l wa i t i n g t ime c a l c u l a t i o n

4 t2=0; // i n t i a l i z i n g t ime t2=0 f o r
t o t a l turn round t ime c a l c u l a t i o n

5

6 btime = bt; // a s s i g n i n g bu r s t t ime
7 wtime = wt; // a s s i g n i n g wa i t i n g t ime
8 tatime = tat // a s s i g n i n g turn around t ime
9 n=num; // a s s i g n i n g number o f p r o c e s s n

=4 he r e
10 fd = %io(2);

11

12 // For l oop f o r c a l c u l a t i n g t o t a l turn around t ime
o f each Pro c e s s
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13 for i=2:1:n

14 wtime(i)=btime(i-1)+wtime(i-1); // wa i t i n g t ime
w i l l be sum o f bu r s t t ime o f p r e v i o u s p r o c e s s
and wa i t i n g t ime o f p r e v i o u s p r o c e s s

15 t1=t1+wtime(i); // c a l c u l a t i n g
t o t a l t ime

16 end

17

18 for i=1:1:n

19 tatime(i)=btime(i)+wtime(i); // turn around
t ime=bur s t t ime +wai t t ime

20 t2=t2+tatime(i); // t o t a l turn
around t ime

21 end

22

23 for i=1:1:n

24 mfprintf(fd, ’ P%d i s %d ’ ,i,tatime(i));
25 end

26

27

28 mfprintf(fd, ’ \n Average Turn−Around Time in FCFS
%. 2 f ’ ,t2/n);

29

30 endfunction

FCFS Turn Around and Average Turn Around Calculation

Scilab code AP 131 // SJF Schedu l i n g
2

3 function [tat ,wait_time ]= shortestjobfirst(num ,btime ,

wtime ,tatime)

4 total =0; // t o t a l wa i t i n g t ime
5 n=num;

6 ptime=btime;

7 process =[1 2 3 4]; // p r o c e s s i d
8 fd = %io(2);

9
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10 for i=1:1:n-1 // s o r t i n g the p r o c e s s e s i n terms o f
p r o c e s s t imes

11 for j=i+1:1:n

12 if(ptime(i)>ptime(j))

13 temp=ptime(i); // a s s i g n i n g Temporary
v a r i a b l e f o r s o r t i n g

14 ptime(i) = ptime(j);

15 ptime(j) = temp;

16 temp = process(i);

17 process(i) = process(j);

18 process(j) = temp;

19 end

20 end

21

22 end

23

24 wtime (1) = 0;

25 for i=2:1:n

26 wtime(i) = wtime(i-1)+ptime(i-1); // wa i t t ime
o f a p r o c e s s i s sum o f wa i t t ime o f p r o c e s s
b e f o r e i t and p r o c e s s t ime o f p r o c e s s b e f o r e
i t

27 total = total + wtime(i); // f i n d i n g
t o t a l wa i t i n g t ime

28 end

29

30 avg = total/n; // f i n d i n g
ave rage t ime

31

32 for i=1:1:n

33 mfprintf(fd, ’ P%d i s %d ’ ,process(i),wtime(i));
34 end

35

36 mfprintf(fd, ’ \n Average Wait ing Time in SJF i s
%. 2 f ’ ,avg);

37

38 endfunction
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SJF for Turn Around Time and Average Turn Around Time calculation

Scilab code AP 141 // Round Robin Schedu l i n g
2 function [tat ,wait_time ]= roundrobin(num ,btime ,wtime ,

tatime)

3 b=0;

4 t=0;

5 n=num

6 q=5; //quantum time
7 wtime=zeros(1,n); // wa i t i n g t ime
8 fd = %io(2);

9 rtime=btime

10

11 // runn ing the p r o c e s s e s f o r s p e c i f i e d quantum
12 for i=1:1:n // runn ing the p r o c e s s e s f o r

quantum =5
13 if(rtime(i)>=q)

14 for j=1:1:n

15 if(j==i)

16 rtime(i)=rtime(i)-q; // s e t t i n g
the r ema in ing t ime i f i t i s the
p r o c e s s s ch edu l ed

17 else if(rtime(j) >0)

18 wtime(j)=wtime(j)+q; //
i n c r emen t i n g wa i t t ime i f i t
i s not the p r o c e s s s ch edu l ed

19 end

20 end

21 end

22 else if(rtime(i) >0)

23 for j=1:1:n

24 if(j==i)

25 rtime(i)=0; // as the
r ema in ing t ime i s l e s s than

quantum i t w i l l run the p r o c e s s
and end i t

26 else if(rtime(j) >0)
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27 wtime(j)=wtime(j)+rtime(i);

// i n c r emen t i n g wa i t t ime i f
i t i s not the p r o c e s s
s ch edu l ed

28 end

29 end

30 end

31 end

32 end

33 end

34 for i=1:1:n

35 if(rtime(i) >0) // i f r ema in ing t ime i s l e f t
s e t f l a g

36 flag =1;

37 end

38 end

39

40 // Tota l wa i t i n g t ime , p r o c e s s e s ave rage wa i t i n g
t ime c a l c u l a t i o n

41 while(flag ==1) // i f f l a g i s s e t run the
above p r o c e s s aga in

42 flag =0;

43 for i=1:1:n

44 if(rtime(i)>=q)

45 for j=1:1:n

46 if(j==i)

47 rtime(i)=rtime(i)-q;

48 else if(rtime(j) >0)

49 wtime(j)=wtime(j)+q;

50 end

51 end

52 end

53 else if(rtime(i) >0)

54 for j=1:1:n

55 if(j==i)

56 rtime(i)=0;

57 else if(rtime(j) >0)

58 wtime(j)=wtime(j)+rtime(
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i); // Updation o f
wa i t i n g t ime f o r each
p r o c e s s

59 end

60 end

61 end

62 end

63 end

64 end

65 for i=1:1:n

66 if(rtime(i) >0)

67 flag =1;

68 end

69 end

70 end

71

72 // d i s p l a y i n g the wa i t i n g t ime in RR
73

74 for i=1:1:n

75 mfprintf(fd, ’ P%d i s %d ’ ,i,wtime(i));
76 end

77

78 // Ca l c u l a t i n g Average Wait ing Time
79 for i=1:1:n

80 b=b+wtime(i);

81 t=t+tatime(i);

82

83 end

84

85 // d i s p l a y i n g the Average wa i t i n g t ime in RR
86

87 mfprintf(fd, ’ \n Average Wait ing Time in Round
Robin i s %. 2 f ’ ,b/n);

88

89 endfunction

Round Robin Scheduling for Waiting and Average Waiting Time calculation
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Scilab code AP 151 function [tat ,wait_time ]=

firstcomefirstserve(num ,btime ,wtime ,tatime) //
Funct ion d e f i n t i o n o f f i r s t come f i r s t s e r v e

2

3 t1=0; // i n t i a l i z i n g t ime t1=0 f o r
t o t a l wa i t i n g t ime c a l c u l a t i o n

4 t2=0; // i n t i a l i z i n g t ime t2=0 f o r
t o t a l turn round t ime c a l c u l a t i o n

5

6 btime = bt; // a s s i g n i n g bu r s t t ime
7 wtime = wt; // a s s i g n i n g wa i t i n g t ime
8 tatime = tat // a s s i g n i n g turn around t ime
9 n=num; // a s s i g n i n g number o f p r o c e s s n

=4 he r e
10 fd = %io(2);

11

12 // For l oop f o r c a l c u l a t i n g t o t a l wa i t i n g t ime o f
each Pro c e s s

13 for i=2:1:n

14 wtime(i)=btime(i-1)+wtime(i-1); // wa i t i n g t ime
w i l l be sum o f bu r s t t ime o f p r e v i o u s

p r o c e s s and wa i t i n g t ime o f p r e v i o u s p r o c e s s
15 t1=t1+wtime(i); // c a l c u l a t i n g

t o t a l wa i t i n g t ime
16 end

17

18

19 // d i s p l a y i n g the wa i t i n g t ime o f each Pro c e s s
20 for i=1:1:n

21 mfprintf(fd, ’ P%d i s %d ’ ,i,wtime(i));
22 end

23

24 mfprintf(fd, ’ \n Average Wait ing Time in FCFS i s
%. 2 f ’ ,t1/n);

25

26 endfunction

FCFS Waiting and Average Waiting Calculation
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Scilab code AP 161 //WINDOWS 10 64−BIT OS , S c i l a b and
t oo l b ox v e r s i o n s 6 . 1 . 0 .

2

3 // l o a d i n g the n e c e s s a r y f u n c t i o n s
4 function [tat ,wait_time ]= shorestjobfirst(pid ,num ,pt ,

wt ,tat) // Funct ion d e f i n t i o n o f f i r s t come
f i r s t s e r v e

5

6 process=pid; // p r o c e s s i d
7 n=num; // number o f p r o c e s s e s
8 ptime = pt; // p r o c e s s t ime or bu r s t t ime
9 tatime =tat; // turn around t ime
10 wtime = wt; // wa i t i n g t ime
11 fd = %io(2);

12

13 // Determin ing the number o f p r o c e s s e s and b l o c k s
14 size_process = size(process);

15 size_process = size_process (2);

16 size_ptime = size(ptime);

17 size_ptime = size_ptime (2);

18

19 //marks the p o s i t i o n o f p r o c e s s with minimum bur s t
t ime i n the s p e c i f i e d range . This may be used to
r e a r r a n g e the o rd e r o f the p r o c e s s e s to a ch i e v e
p rope r SJF s c h e du l i n g . . .

20 for i=1:1:n-1 // For l oop f o r s o r t i n g the p r o c e s s e s
i n terms o f p r o c e s s t imes

21 for j=i+1:1:n

22 if(ptime(i)>ptime(j))

23 temp=ptime(i); // temporary
v a r i a b l e used to enab l e e f f i c i e n t
swapping o f v a l u e s . .

24 ptime(i) = ptime(j);

25 ptime(j) = temp;

26 temp = process(i);

27 process(i) = process(j);

28 process(j) = temp;

29 end
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30 end

31

32 end

33

34 wtime (1) = 0;

35 // wa i t i n g t ime c a l c u l a t i o n
36 for i=2:1:n

37 wtime(i) = wtime(i-1)+ptime(i-1); // wa i t t ime
o f a p r o c e s s i s sum o f wa i t t ime o f p r o c e s s
b e f o r e i t and p r o c e s s t ime o f p r o c e s s b e f o r e
i t

38 total = total + wtime(i); // f i n d i n g
t o t a l wa i t i n g t ime

39 end

40

41 // t o t a l turnaround t ime c a l c u l a t i o n
42 for i=1:1:n

43 tatime(i)=ptime(i)+wtime(i); // turn around
t ime=bur s t t ime +wai t t ime

44 total2=total2+tatime(i); // t o t a l
turn around t ime

45 end

46

47 avg = total/n; // f i n d i n g
ave rage time , ave rage wa i t i n g t ime c a l c u l a t e d by
d i v i d i n g t o t a l wa i t i n g t ime by number o f p r o c e s e s

48 avg1 = total2/n; // ave rage
turn around t ime c a l c u l a t e d by d i v i d i n g t o t a l
turn around t ime by number o f p r o c e s s e s

49

50 display(process ,size_process ,wtime ,tatime ,avg ,avg1);

// d i s p l a y i n g the p r o c e s s and b l o ck
a l l o c a t i o n by f i r s t f i t a r r ay

51 endfunction

SJF New
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Scilab code AP 171 //WINDOWS 10 64−BIT OS , S c i l a b and
t oo l b ox v e r s i o n s 6 . 1 . 0 .

2 // D i sp l ay Funct ion : I t p r i n t s a l l r e q u i r e d d e t a i l s
such as P ro c e s s no .

3 //Wait ing time , Turn−Around time , Average Wait ing
t ime and Average Turn−Around t ime

4

5 function display(process ,size_process ,wtime ,tatime ,

avg ,avg1)

6 // d i s p l a y o f f i n a l v a l u e s
7

8 for i=1:1:n

9 mfprintf(fd, ’ P%d ’ ,process(i)); //
D i s p l a y i n g s o r t e d Pro c e s s based on i t s
S h o r t e s t Job

10 end

11

12 disp( ’ Wait ing t ime o f each Pro c e s s u s i n g SFJ ’ ); //
d i s p l a y i n g the Wait ing t ime

13 for i=1:1:n

14 mfprintf(fd, ’ P%d i s %d ’ ,process(i),wtime(i));
15 end

16

17 disp( ’ Turn−Around t ime o f each Pro c e s s u s i n g SFJ ’ );
// d i s p l a y i n g the Turn−Around t ime

18 for i=1:1:n

19 mfprintf(fd, ’ P%d i s %d ’ ,process(i),tatime(i))
;

20 end

21

22 mfprintf(fd, ’ \n Average Wait ing Time u s i n g SJF i s
%. 2 f ’ ,avg); // d i s p l a y i n g the Average Wait ing
t ime

23 mfprintf(fd, ’ \n Average Turn−Around Time u s i n g SFJ
i s %. 2 f ’ ,avg1); // d i s p l a y i n g the Average Turn−

Around t ime
24

25 endfunction

65



Display Function SJF new

Scilab code AP 181 function [tat ,wait_time ]=

firstcomefirstserve(num ,btime ,wtime ,tatime) //
Funct ion d e f i n t i o n o f f i r s t come f i r s t s e r v e

2

3 t1=0; // i n t i a l i z i n g t ime t1=0 f o r
t o t a l wa i t i n g t ime c a l c u l a t i o n

4 t2=0; // i n t i a l i z i n g t ime t2=0 f o r
t o t a l turn round t ime c a l c u l a t i o n

5

6 btime = bt; // a s s i g n i n g bu r s t t ime
7 wtime = wt; // a s s i g n i n g wa i t i n g t ime
8 tatime = tat // a s s i g n i n g turn around t ime
9 n=num; // a s s i g n i n g number o f p r o c e s s n

=4 he r e
10 fd = %io(2);

11

12 // For l oop f o r c a l c u l a t i n g t o t a l wa i t i n g t ime o f
each Pro c e s s

13 for i=2:1:n

14 wtime(i)=btime(i-1)+wtime(i-1); // wa i t i n g t ime
w i l l be sum o f bu r s t t ime o f p r e v i o u s

p r o c e s s and wa i t i n g t ime o f p r e v i o u s p r o c e s s
15 t1=t1+wtime(i); // c a l c u l a t i n g

t o t a l wa i t i n g t ime
16 end

17

18 // For l oop f o r c a l c u l a t i n g t o t a l turn around t ime o f
each Pro c e s s

19 for i=1:1:n

20 tatime(i)=btime(i)+wtime(i); // turn around
t ime=bur s t t ime +wai t t ime

21 t2=t2+tatime(i); // t o t a l turn
around t ime

22 end

23
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24

25 // d i s p l a y i n g the wa i t i n g t ime o f each Pro c e s s
26 for i=1:1:n

27 mfprintf(fd, ’ P%d i s %d ’ ,i,wtime(i));
28 end

29

30 disp( ’ Turn−Around Time o f each Pro c e s s ’ );
// d i s p l a y i n g the f i n a l Turn−Around t ime o f
each Pro c e s s

31 for i=1:1:n

32 mfprintf(fd, ’ P%d i s %d ’ ,i,tatime(i));
33 end

34

35 mfprintf(fd, ’ \n Average Wait ing Time i s %. 2 f ’
,t1/n); // d i s p l a y i n g the Average
wa i t i n g t ime

36 mfprintf(fd, ’ \n Average Turn−Around Time i s %
. 2 f ’ ,t2/n); // d i s p l a y i n g the Average Turn
Around t ime

37

38 endfunction

First Come First Serve CPU Scheduling
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