
Scilab Manual for
Digital Signal Processing Lab-1
by Prof Jeevan Reddy Koya
Electronics Engineering

Sreenidhi Institute Of Science And
Technology1

Solutions provided by
Mr Sai Sugun L

Electronics Engineering
Sreenidihi Institute Of Science & Technology

January 17, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 Power spectral density estimation using n-point dft 5

2 PSD estimation via window based technique 10

3 Direct Sequence Spread Spectrum(DS-BPSK) 23

4 Constellation Diagram For Binary PSK 28

5 Repetition Code 31

6 Continuous Time Fourier Series of Sine Signal 33

7 Spectrum of Signal (Frequency Response)-Blackmann Win-
dow 35

8 Comparision Of Different Power Spectrum Estimates 37

9 Continuous Time Fourier Transform Of An Exponential Sig-
nal 39

10 FIR Band Pass Filter - Remez Algorithm-LPF 43

2

List of Experiments

Solution 1.1 1 . 5
Solution 2.2 2 . 10
Solution 3.3 3 . 23
Solution 4.4 4 . 28
Solution 5.5 5 . 31
Solution 6.6 6 . 33
Solution 7.7 7 . 35
Solution 8.8 8 . 37
Solution 9.9 9 . 39
Solution 10.10 10 . 43
AP 1 RepetitionCode 46
AP 2 DSSS . 49

3

List of Figures

1.1 1 . 6
1.2 1 . 6

2.1 2 . 11

3.1 3 . 24
3.2 3 . 24

4.1 4 . 29

7.1 7 . 36

9.1 9 . 40
9.2 9 . 40

10.1 10 . 44

4

Experiment: 1

Power spectral density
estimation using n-point dft

Scilab code Solution 1.1 1

1

2 //Power spectrum e v a l u a t i o n o f a d i s c r e t e s equence
Using N−po i n t DFT

3 //OS : Windows 10
4 // S c i l a b 5 . 5 . 2
5

6 clear all;

7 clc;

8 close;

9

10 N =16; //Number o f sample s i n g i v en s equence
11 n =0:N-1;

12 delta_f = [0.06 ,0.01]; // f r e qu en cy s e p a r a t i o n
13 x1 = sin(2* %pi *0.315*n)+cos(2*%pi *(0.315+ delta_f (1))

*n);

5

Figure 1.1: 1

Figure 1.2: 1

6

14 x2 = sin(2* %pi *0.315*n)+cos(2*%pi *(0.315+ delta_f (2))

*n);

15 L = [8 ,16 ,32 ,128];

16 k1 = 0:L(1) -1;

17 k2 = 0:L(2) -1;

18 k3 = 0:L(3) -1;

19 k4 = 0:L(4) -1;

20 fk1 = k1./L(1);

21 fk2 = k2./L(2);

22 fk3 = k3./L(3);

23 fk4 = k4./L(4);

24 for i =1: length(fk1)

25 Pxx1_fk1(i) = 0;

26 Pxx2_fk1(i) = 0;

27 for m = 1:N

28 Pxx1_fk1(i)=Pxx1_fk1(i)+x1(m)*exp(-sqrt(-1)*2*

%pi*(m-1)*fk1(i));

29 Pxx2_fk1(i)=Pxx1_fk1(i)+x1(m)*exp(-sqrt(-1)*2*

%pi*(m-1)*fk1(i));

30 end

31 Pxx1_fk1(i) = (Pxx1_fk1(i)^2)/N;

32 Pxx2_fk1(i) = (Pxx2_fk1(i)^2)/N;

33 end

34 for i =1: length(fk2)

35 Pxx1_fk2(i) = 0;

36 Pxx2_fk2(i) = 0;

37 for m = 1:N

38 Pxx1_fk2(i)=Pxx1_fk2(i)+x1(m)*exp(-sqrt(-1)*2*

%pi*(m-1)*fk2(i));

39 Pxx2_fk2(i)=Pxx1_fk2(i)+x1(m)*exp(-sqrt(-1)*2*

%pi*(m-1)*fk2(i));

40 end

41 Pxx1_fk2(i) = (Pxx1_fk2(i)^2)/N;

42 Pxx2_fk2(i) = (Pxx1_fk2(i)^2)/N;

43 end

44 for i =1: length(fk3)

45 Pxx1_fk3(i) = 0;

46 Pxx2_fk3(i) = 0;

7

47 for m = 1:N

48 Pxx1_fk3(i) =Pxx1_fk3(i)+x1(m)*exp(-sqrt(-1)*2*

%pi*(m-1)*fk3(i));

49 Pxx2_fk3(i) =Pxx1_fk3(i)+x1(m)*exp(-sqrt(-1)*2*

%pi*(m-1)*fk3(i));

50 end

51 Pxx1_fk3(i) = (Pxx1_fk3(i)^2)/N;

52 Pxx2_fk3(i) = (Pxx1_fk3(i)^2)/N;

53 end

54 for i =1: length(fk4)

55 Pxx1_fk4(i) = 0;

56 Pxx2_fk4(i) = 0;

57 for m = 1:N

58 Pxx1_fk4(i) =Pxx1_fk4(i)+x1(m)*exp(-sqrt(-1)*2*

%pi*(m-1)*fk4(i));

59 Pxx2_fk4(i) =Pxx1_fk4(i)+x1(m)*exp(-sqrt(-1)*2*

%pi*(m-1)*fk4(i));

60 end

61 Pxx1_fk4(i) = (Pxx1_fk4(i)^2)/N;

62 Pxx2_fk4(i) = (Pxx1_fk4(i)^2)/N;

63 end

64

65 figure (1)

66 subplot (2,2,1)

67 plot2d3(’ gnn ’ ,k1 ,abs(Pxx1_fk1))
68 xtitle(’ 8 p o i n t DFT ’)
69 xlabel(’ k1 ’)
70 ylabel(’ Power Spectrum ’)
71 subplot (2,2,2)

72 plot2d3(’ gnn ’ ,k2 ,abs(Pxx1_fk2))
73 xtitle(’ 16 po i n t DFT ’)
74 xlabel(’ k2 ’)
75 ylabel(’ Power Spectrum ’)
76 subplot (2,2,3)

77 plot2d3(’ gnn ’ ,k3 ,abs(Pxx1_fk3))
78 xtitle(’ 32 po i n t DFT ’)
79 xlabel(’ k3 ’)
80 ylabel(’ Power Spectrum ’)

8

81 subplot (2,2,4)

82 plot2d3(’ gnn ’ ,k4 ,abs(Pxx1_fk4))
83 xtitle(’ 128 po i n t DFT ’)
84 xlabel(’ k4 ’)
85 ylabel(’ Power Spectrum ’)
86 figure (2)

87 xlabel(’ k1 ’)
88 ylabel(’ Power Spectrum ’)
89 subplot (2,2,1)

90 plot2d3(’ gnn ’ ,k1 ,abs(Pxx2_fk1))
91 xtitle(’ 8 p o i n t DFT ’)
92 xlabel(’ k1 ’)
93 ylabel(’ Power Spectrum ’)
94 subplot (2,2,2)

95 plot2d3(’ gnn ’ ,k2 ,abs(Pxx2_fk2))
96 xtitle(’ 16 po i n t DFT ’)
97 xlabel(’ k2 ’)
98 ylabel(’ Power Spectrum ’)
99 subplot (2,2,3)

100 plot2d3(’ gnn ’ ,k3 ,abs(Pxx2_fk3))
101 xtitle(’ 32 po i n t DFT ’)
102 xlabel(’ k3 ’)
103 ylabel(’ Power Spectrum ’)
104 subplot (2,2,4)

105 plot2d3(’ gnn ’ ,k4 ,abs(Pxx2_fk4))
106 xtitle(’ 128 po i n t DFT ’)
107 xlabel(’ k4 ’)
108 ylabel(’ Power Spectrum ’)

9

Experiment: 2

PSD estimation via window
based technique

Scilab code Solution 2.2 2

1 // Dete rmina t i on o f power spectrum o f a s i g n a l u s i n g
window based t e c hn i q u e s

2 //OS : Windows 10
3 // S c i l a b 5 . 5 . 2
4

5 clear all;

6 clc;

7 close;

8

9 //With maximum norma l i z ed f r e qu en cy f = 0 . 1
10

11 N = 61;

12 cfreq = [0.1 0];

13 [wft ,wfm ,fr]=wfir(’ l p ’ ,N,cfreq , ’ r e ’ ,0);
14 disp(wft , ’ Time domain f i l t e r c o e f f i c i e n t s hd (n)= ’);
15 disp(wfm , ’ Frequency domain f i l t e r v a l u e s Hd(w)= ’);
16 WFM_dB = 20* log10(wfm);// Frequency r e s p on s e i n dB

10

Figure 2.1: 2

17 for n = 1:N

18 h_balckmann(n)=0.42 -0.5* cos(2*%pi*n/(N-1))+0.08* cos

(4* %pi*n/(N-1));

19 end

20 wft_blmn = wft ’.* h_balckmann;

21 disp(wft_blmn , ’ Blackmann window based F i l t e r output
h (n)= ’)

22 wfm_blmn = frmag(wft_blmn ,length(fr));

23 WFM_blmn_dB =20* log10(wfm_blmn);

24 subplot (2,1,1)

25 plot2d(fr,WFM_dB)

26 xgrid (1)

27 xtitle(’ Power Spectrum with Rec tangu l a r window
F i l t e r e d M = 61 ’ , ’ Frequency i n c y c l e s per sample s

f ’ , ’ Energy d e n s i t y i n dB ’)
28 subplot (2,1,2)

29 plot2d(fr,WFM_blmn_dB)

30 xgrid (1)

31 xtitle(’ Power Spectrum with Blackmann window
F i l t e r e d M = 61 ’ , ’ Frequency i n c y c l e s per
sample s f ’ , ’ Energy d e n s i t y i n dB ’)

32

33 //Output

11

34

35 // Time domain f i l t e r c o e f f i c i e n t s hd (n)=
36 //
37 //
38 // column 1 to 6
39 //
40 // 0 . −0.0064517 −0.0108118 −0.0112122

−0.0071961 0 .
41 //
42 // column 7 to 11
43 //
44 // 0 . 0077957 0 . 0131622 0 . 0137605 0 . 0089094

0 .
45 //
46 // column 12 to 16
47 //
48 // −0.0098473 −0.0168184 −0.0178077 −0.0116936

0 .
49 //
50 // column 17 to 21
51 //
52 // 0 . 0133641 0 . 023287 0 . 0252276 0 . 0170089

0 .
53 //
54 // column 22 to 26
55 //
56 // −0.0207887 −0.0378413 −0.0432472 −0.031183

0 .
57 //
58 // column 27 to 31
59 //
60 // 0 . 0467745 0 . 1009102 0 . 1513653 0 . 1870979

0 . 2
61 //
62 // column 32 to 36
63 //
64 // 0 . 1870979 0 . 1513653 0 . 1009102 0 . 0467745

0 .

12

65 //
66 // column 37 to 41
67 //
68 // −0.031183 −0.0432472 −0.0378413 −0.0207887

0 .
69 //
70 // column 42 to 46
71 //
72 // 0 . 0170089 0 . 0252276 0 . 023287 0 . 0133641

0 .
73 //
74 // column 47 to 51
75 //
76 // −0.0116936 −0.0178077 −0.0168184 −0.0098473

0 .
77 //
78 // column 52 to 56
79 //
80 // 0 . 0089094 0 . 0137605 0 . 0131622 0 . 0077957

0 .
81 //
82 // column 57 to 61
83 //
84 // −0.0071961 −0.0112122 −0.0108118 −0.0064517

0 .
85 //
86 // Frequency domain f i l t e r v a l u e s Hd(w)=
87 //
88 //
89 // column 1 to 4
90 //
91 // 0 . 9675288 0 . 9697174 0 . 9759947 0 . 9855327
92 //
93 // column 5 to 8
94 //
95 // 0 . 9970705 1 . 0090769 1 . 0199494 1 . 0282222
96 //
97 // column 9 to 12

13

98 //
99 // 1 . 0327597 1 . 0329081 1 . 0285865 1 . 0203056

100 //
101 // column 13 to 16
102 //
103 // 1 . 0091095 0 . 9964485 0 . 9839967 0 . 9734374
104 //
105 // column 17 to 20
106 //
107 // 0 . 9662427 0 . 9634759 0 . 9656411 0 . 9726015
108 //
109 // column 21 to 24
110 //
111 // 0 . 9835771 0 . 9972258 1 . 0117987 1 . 0253531
112 //
113 // column 25 to 28
114 //
115 // 1 . 0359982 1 . 0421436 1 . 0427207 1 . 0373466
116 //
117 // column 29 to 32
118 //
119 // 1 . 0264107 1 . 0110667 0 . 9931303 0 . 9748874
120 //
121 // column 33 to 36
122 //
123 // 0 . 9588338 0 . 9473719 0 . 9424999 0 . 9455261
124 //
125 // column 37 to 40
126 //
127 // 0 . 9568447 0 . 9757996 1 . 0006553 1 . 0286838
128 //
129 // column 41 to 44
130 //
131 // 1 . 0563623 1 . 0796646 1 . 0944208 1 . 0967084
132 //
133 // column 45 to 49
134 //
135 // 1 . 083237 1 . 0516873 1 . 0009693 0 . 9313716

14

0 . 844588
136 //
137 // column 50 to 54
138 //
139 // 0 . 7436142 0 . 6325263 0 . 5 1616 0 . 3997228

0 . 2883759
140 //
141 // column 55 to 58
142 //
143 // 0 . 1868241 0 . 0989556 0 . 0275603 0 . 0258446
144 //
145 // column 59 to 62
146 //
147 // 0 . 0610721 0 . 0792022 0 . 082409 0 . 0737002
148 //
149 // column 63 to 66
150 //
151 // 0 . 0565962 0 . 0347843 0 . 0117814 0 . 009362
152 //
153 // column 67 to 70
154 //
155 // 0 . 0262894 0 . 0374811 0 . 0423011 0 . 0409531
156 //
157 // column 71 to 74
158 //
159 // 0 . 0343542 0 . 0239471 0 . 0114751 0 . 0012542
160 //
161 // column 75 to 78
162 //
163 // 0 . 0125883 0 . 0212119 0 . 0262721 0 . 0274398
164 //
165 // column 79 to 82
166 //
167 // 0 . 0249026 0 . 0192981 0 . 0115978 0 . 0029604
168 //
169 // column 83 to 87
170 //
171 // 0 . 0054265 0 . 0124965 0 . 017429 0 . 019734

15

0 . 0192912
172 //
173 // column 88 to 92
174 //
175 // 0 . 0 1634 0 . 0114257 0 . 0053107 0 . 0011358

0 . 0070546
176 //
177 // column 93 to 96
178 //
179 // 0 . 0117055 0 . 0145548 0 . 0153314 0 . 0140473
180 //
181 // column 97 to 100
182 //
183 // 0 . 0109805 0 . 0066249 0 . 0016159 0 . 0033586
184 //
185 // column 101 to 104
186 //
187 // 0 . 0076495 0 . 0107281 0 . 0122486 0 . 0120842
188 //
189 // column 105 to 108
190 //
191 // 0 . 0103331 0 . 0072958 0 . 0034271 0 . 0007296
192 //
193 // column 109 to 112
194 //
195 // 0 . 0046165 0 . 0077345 0 . 0097054 0 . 0103164
196 //
197 // column 113 to 116
198 //
199 // 0 . 0095408 0 . 0075343 0 . 0046078 0 . 0011806
200 //
201 // column 117 to 120
202 //
203 // 0 . 0022776 0 . 0053107 0 . 0075345 0 . 0086846
204 //
205 // column 121 to 124
206 //
207 // 0 . 0086466 0 . 0074659 0 . 0053365 0 . 0025704

16

208 //
209 // column 125 to 128
210 //
211 // 0 . 0004471 0 . 0033099 0 . 0056452 0 . 0071613
212 //
213 // column 129 to 132
214 //
215 // 0 . 0076831 0 . 0071717 0 . 0057252 0 . 0035621
216 //
217 // column 133 to 136
218 //
219 // 0 . 0009886 0 . 0016436 0 . 0039851 0 . 0057344
220 //
221 // column 137 to 140
222 //
223 // 0 . 0066764 0 . 0067081 0 . 0058494 0 . 0042369
224 //
225 // column 141 to 145
226 //
227 // 0 . 0021034 0 . 0002558 0 . 0025229 0 . 0 044

0 . 0056481
228 //
229 // column 146 to 150
230 //
231 // 0 . 0061171 0 . 005763 0 . 004652 0 . 0029484

0 . 0008913
232 //
233 // column 151 to 154
234 //
235 // 0 . 0012388 0 . 0031582 0 . 0046169 0 . 0054315
236 //
237 // column 155 to 158
238 //
239 // 0 . 0055074 0 . 0048499 0 . 003561 0 . 0018246
240 //
241 // column 159 to 162
242 //
243 // 0 . 0001203 0 . 0020115 0 . 0035992 0 . 0046784

17

244 //
245 // column 163 to 167
246 //
247 // 0 . 0051154 0 . 004864 0 . 0039702 0 . 002564

0 . 0008414
248 //
249 // column 168 to 171
250 //
251 // 0 . 0009635 0 . 0026096 0 . 0038807 0 . 0046144
252 //
253 // column 172 to 175
254 //
255 // 0 . 004722 0 . 0041992 0 . 0031255 0 . 0016524
256 //
257 // column 176 to 179
258 //
259 // 0 . 0000183 0 . 0016613 0 . 0030588 0 . 0040284
260 //
261 // column 180 to 183
262 //
263 // 0 . 0044474 0 . 004268 0 . 0035224 0 . 0023176
264 //
265 // column 184 to 187
266 //
267 // 0 . 0008202 0 . 0007666 0 . 0022306 0 . 0033785
268 //
269 // column 188 to 191
270 //
271 // 0 . 0040614 0 . 0041944 0 . 0037665 0 . 0028415
272 //
273 // column 192 to 195
274 //
275 // 0 . 0015484 0 . 0000637 0 . 0014125 0 . 0026839
276 //
277 // column 196 to 199
278 //
279 // 0 . 0035833 0 . 0039949 0 . 0038691 0 . 0032282
280 //

18

281 // column 200 to 203
282 //
283 // 0 . 0021631 0 . 0008199 0 . 0006196 0 . 0019626
284 //
285 // column 204 to 207
286 //
287 // 0 . 003031 0 . 0036848 0 . 0038407 0 . 0034824
288 //
289 // column 208 to 211
290 //
291 // 0 . 0026621 0 . 0014932 0 . 0001345 0 . 0012312
292 //
293 // column 212 to 215
294 //
295 // 0 . 0024216 0 . 0032793 0 . 0036924 0 . 003609
296 //
297 // column 216 to 219
298 //
299 // 0 . 0030439 0 . 002076 0 . 0008371 0 . 0005054
300 //
301 // column 220 to 223
302 //
303 // 0 . 0017717 0 . 0027931 0 . 0034349 0 . 0036136
304 //
305 // column 224 to 228
306 //
307 // 0 . 003308 0 . 0025617 0 . 0014769 0 . 0002001

0 . 001097
308 //
309 // column 229 to 233
310 //
311 // 0 . 002241 0 . 0030797 0 . 0035026 0 . 003455

0 . 0029452
312 //
313 // column 234 to 237
314 //
315 // 0 . 0020432 0 . 0008713 0 . 000413 0 . 0016374
316 //

19

317 // column 238 to 241
318 //
319 // 0 . 0026386 0 . 0032833 0 . 0034864 0 . 0032221
320 //
321 // column 242 to 245
322 //
323 // 0 . 0025269 0 . 0014951 0 . 0002654 0 . 0009971
324 //
325 // column 246 to 249
326 //
327 // 0 . 0021236 0 . 0029635 0 . 0034049 0 . 0033894
328 //
329 // column 250 to 253
330 //
331 // 0 . 0029197 0 . 0020592 0 . 0009236 0 . 0003348
332 //
333 // column 254 to 256
334 //
335 // 0 . 0015476 0 . 0025522 0 . 0032144
336 //
337 // Blackmann window based F i l t e r output h (n)=
338 //
339 // −7.725D−21
340 // −0.0000259
341 // −0.0000994
342 // −0.0001879
343 // −0.0001942
344 // 3 . 1 3 5D−19
345 // 0 . 0004427
346 // 0 . 0010144
347 // 0 . 0013951
348 // 0 . 0011582
349 // −1.272D−18
350 // −0.001977
351 // −0.0040862
352 // −0.005155
353 // −0.0039758
354 // 3 . 0 7 2D−18

20

355 // 0 . 0060255
356 // 0 . 0118714
357 // 0 . 0143756
358 // 0 . 0107156
359 // −5.373D−18
360 // −0.0155126
361 // −0.0302706
362 // −0.0367268
363 // −0.0278468
364 // 7 . 2 5 3D−18
365 // 0 . 0449152
366 // 0 . 0991097
367 // 0 . 1506861
368 // 0 . 1870979
369 // 0 . 1991026
370 // 0 . 1837596
371 // 0 . 1453485
372 // 0 . 0938771
373 // 0 . 0417702
374 // 6 . 6 2 1D−18
375 // −0.0249443
376 // −0.0322712
377 // −0.0260792
378 // −0.0130968
379 // −4.443D−18
380 // 0 . 0086709
381 // 0 . 0113744
382 // 0 . 0091754
383 // 0 . 0045438
384 // 2 . 2 5 7D−18
385 // −0.0028411
386 // −0.0035753
387 // −0.0027431
388 // −0.0012801
389 // −7.904D−19
390 // 0 . 0006867
391 // 0 . 0007815
392 // 0 . 0005293

21

393 // 0 . 0002104
394 // 1 . 3 0 6D−19
395 // −0.0000662
396 // −0.000045
397 // −0.0000107
398 // 8 . 9 5 3D−20
399 // −7.725D−21

22

Experiment: 3

Direct Sequence Spread
Spectrum(DS-BPSK)

check Appendix AP 2 for dependency:

DS_Spread_Spectrum.sci

Scilab code Solution 3.3 3

1

2 // D i r e c t Sequence Spread Spectrum (DS−BPSK)
3 //OS : Windows 10
4 // S c i l a b 5 . 5 . 2
5

6 clear all;

7 clc;

8 close;

9

10 function[st,mt]= DS_Spread_Spectrum(bt,ct_polar)

23

Figure 3.1: 3

Figure 3.2: 3

24

11 // Genera t i on o f waveforms i n DS/BPSK spread spectrum
t r a n sm i t t e r

12 // bt : Input Data Sequence (b i p o l a r fo rmat)
13 // c t p o l a r : Sp r ead ing code (b i p o l a r fo rmat)
14 Ft = 0:0.01:1;

15 // bt = [1 ∗ ones (1 ,N) −1∗ones (1 ,N)] ;
16 t = 0: length(bt) -1;

17 // c t p o l a r = [−1 , −1 ,1 ,1 ,1 , −1 ,1 , −1 , −1 ,1 ,1 ,1 , −1 ,1] ;
18 mt = bt.* ct_polar;

19 Carrier = 2*sin(Ft*2*%pi);

20 st = [];

21 for i = 1: length(mt)

22 st = [st mt(i)*Carrier];

23 end

24

25 figure

26 subplot (3,1,1)

27 a =gca();

28 a.x_location = ” o r i g i n ”;
29 a.y_location = ” o r i g i n ”;
30 a.data_bounds = [0,-2;20,2];

31 plot2d2(t,bt ,5)

32 xlabel(’

t ’)
33 ylabel(’

b (t) ’)
34 title(’ Data ’)
35 subplot (3,1,2)

36 a =gca();

37 a.x_location = ” o r i g i n ”;
38 a.y_location = ” o r i g i n ”;
39 a.data_bounds = [0,-2;20,2];

40 plot2d2(t,ct_polar ,5)

41 xlabel(’

t ’)

25

42 ylabel(’

c (t) ’)
43 title(’ Sp r ead ing code ’)
44 subplot (3,1,3)

45 a =gca();

46 a.x_location = ” o r i g i n ”;
47 a.y_location = ” o r i g i n ”;
48 a.data_bounds = [0,-2;20,2];

49 plot2d2(t,mt ,5)

50 xlabel(’

t ’)
51 ylabel(’

m(t) ’)
52 title(’ Product S i g n a l ’)
53

54 figure

55 subplot (3,1,1)

56 a =gca();

57 a.x_location = ” o r i g i n ”;
58 a.y_location = ” o r i g i n ”;
59 a.data_bounds = [0,-2;20,2];

60 plot2d2(t,mt ,5)

61 xlabel(’

t ’)
62 ylabel(’

m(t) ’)
63 title(’ Product S i g n a l ’)
64 subplot (3,1,2)

65 a =gca();

66 a.x_location = ” o r i g i n ”;
67 a.y_location = ” o r i g i n ”;
68 a.data_bounds = [0,-2;20,2];

69 plot(Carrier)

26

70 xlabel(’

t ’)
71 ylabel(’

c (t) ’)
72 title(’ C a r r i e r S i g n a l ’)
73 subplot (3,1,3)

74 a =gca();

75 a.x_location = ” o r i g i n ”;
76 a.y_location = ” o r i g i n ”;
77 a.data_bounds = [0,-2;20,2];

78 plot(st)

79 xlabel(’

t ’)
80 ylabel(’

s (t) ’)
81 title(’DS/BPSK s i g n a l ’)
82 endfunction

83

84 bt = [1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1]

85 ct_polar = [-1,-1,1,1,1,-1,1,-1,-1,1,1,1,-1,1]

86 [st ,mt]= DS_Spread_Spectrum(bt ,ct_polar)

27

Experiment: 4

Constellation Diagram For
Binary PSK

Scilab code Solution 4.4 4

1 // C o n s t e l l a t i o n Diagram For Binary PSK
2 //OS : Windows 10
3 // S c i l a b 5 . 5 . 2
4

5 clear all;

6 clc;

7 close;

8

9 function[y]= Constellation_BPSK ()

10 M =2;

11 i = 1:M;

12 y = cos(2*%pi+(i-1)*%pi);

13 annot = dec2bin ([length(y) -1:-1:0],log2(M));

14 disp(y, ’ c o o r d i n a t e s o f message p o i n t s ’)
15 disp(annot , ’ Message p o i n t s ’)
16 figure;

17 a =gca();

28

Figure 4.1: 4

18 a.data_bounds = [-2,-2;2,2];

19 a.x_location = ” o r i g i n ”;
20 a.y_location = ” o r i g i n ”;
21 plot2d(real(y(1)),imag(y(1)) ,-9)

22 plot2d(real(y(2)),imag(y(2)) ,-5)

23 xlabel(’

In−Phase ’);
24 ylabel(’

Quadrature ’);
25 title(’ C o n s t e l l a t i o n f o r BPSK ’)
26 legend ([’ message po i n t 1 (b ina ry 1) ’ ; ’ message po i n t

2 (b ina ry 0) ’],5)
27 endfunction

28

29 Constellation_BPSK ()

30

31 //Output
32 // c o o r d i n a t e s o f message p o i n t s
33 //
34 // 1 . −1.
35 //

29

36 // Message p o i n t s
37 //
38 // ! 1 0 !

30

Experiment: 5

Repetition Code

check Appendix AP 1 for dependency:

RepetitionCode.sci

Scilab code Solution 5.5 5

1 // Rep e t i t i o n Code
2 //OS : Windows 10
3 // S c i l a b 5 . 5 . 2
4

5 clear all;

6 clc;

7 close;

8

9 function [G,H,x]= RepetitionCode(n,k,m)

10 // Rep e t i t i o n Codes
11 //n =b lo ck o f i d e n t i c a l ’ n ’ b i t s
12 //k =1 one b i t
13 //m = 1 ; / / b i t va l u e = 1
14 I = eye(n-k,n-k);// I d e n t i t y matr ix
15 P = ones(1,n-k);// c o e f f i c i e n t matr ix
16 H = [I P’]; // pa r i t y −check matr ix
17 G = [P 1]; // g e n e r a t o r matr ix

31

18 x = m.*G; // code word
19 disp(G, ’ g e n e r a t o r matr ix ’);
20 disp(H, ’ p a r i t y −check matr ix ’);
21 disp(x, ’ code word f o r b ina ry one input ’);
22 endfunction

23

24 n=5;

25 k=1;

26 m=1;

27 [G,H,x]= RepetitionCode(n,k,m)

28

29 //Output
30 // g e n e r a t o r matr ix
31 //
32 // 1 . 1 . 1 . 1 . 1 .
33 //
34 // pa r i t y −check matr ix
35 //
36 // 1 . 0 . 0 . 0 . 1 .
37 // 0 . 1 . 0 . 0 . 1 .
38 // 0 . 0 . 1 . 0 . 1 .
39 // 0 . 0 . 0 . 1 . 1 .
40 //
41 // code word f o r b ina ry one input
42 //
43 // 1 . 1 . 1 . 1 . 1 .

32

Experiment: 6

Continuous Time Fourier Series
of Sine Signal

Scilab code Solution 6.6 6

1 // Cont inuous Time Fou r i e r S e r i e s o f S in e S i g n a l
2 //OS : Windows 10
3 // S c i l a b 5 . 5 . 2
4

5 clear;

6 clc;

7 close;

8

9 // p e r i o d i c s i n e s i g n a l x (t) = s i n (Wot)
10

11 t = 0:0.01:1;

12 T = 1;

13 Wo = 2*%pi/T;

14 xt = sin(Wo*t);

15 for k =0:5

16 C(k+1,:) = exp(-sqrt(-1)*Wo*t.*k);

17 a(k+1) = xt*C(k+1,:) ’/length(t); // f o u r i e r s e r i e s
i s done

18 if(abs(a(k+1)) <=0.01)

33

19 a(k+1)=0;

20 end

21 end

22 a =a’;

23 ak = [-a($:-1:1),a(2:$)];
24 disp(ak, ’ Cont inuous Time Fou r i e r S e r i e s C o e f f i c i e n t s

a r e : ’)
25

26 //Output
27 // Cont inuous Time Fou r i e r S e r i e s C o e f f i c i e n t s a r e :
28 //
29 //
30 // column 1 to 9
31 //
32 // 0 . 0 . 0 . 0 . 0 . 4 950495 i 0 . −0.4950495

i 0 . 0 .
33 //
34 // column 10 to 11
35 //
36 // 0 . 0 .

34

Experiment: 7

Spectrum of Signal (Frequency
Response)-Blackmann Window

Scilab code Solution 7.7 7

1 //SPECTRUM OF SIGNAL (FREQUENCY RESPONSE)− BLACKMANN
WINDOW

2 //OS : Windows 10
3 // S c i l a b 5 . 5 . 2
4

5 clear all;

6 clc;

7 close;

8

9 //With maximum norma l i z ed f r e qu en cy f = 0 . 4
10

11 N = 11;

12 cfreq = [0.4 0];

13 [wft ,wfm ,fr]=wfir(’ l p ’ ,N,cfreq , ’ r e ’ ,0);
14 wft; // Time domain f i l t e r

c o e f f i c i e n t s
15 wfm; // Frequency domain f i l t e r

35

Figure 7.1: 7

v a l u e s
16 fr; // Frequency sample p o i n t s
17 for n = 1:N

18 h_blackmann(n)=0.42 -0.5* cos(2*%pi*n/(N-1))+0.08*

cos (4*%pi*n/(N-1));

19 wft_blmn(n) = wft(n)*h_blackmann(n);

20 end

21 wfm_blmn = frmag(wft_blmn ,length(fr));

22 WFM_blmn_dB =20* log10(wfm_blmn);

23 plot2d(fr,WFM_blmn_dB)

24 xtitle(’ Frequency Response o f Blackmann window
F i l t e r e d output N = 11 ’ , ’ Frequency i n c y c l e s per
sample s f ’ , ’ Energy d e n s i t y i n dB ’)

36

Experiment: 8

Comparision Of Different
Power Spectrum Estimates

Scilab code Solution 8.8 8

1 //COMPARISON OF DIFFERENT POWER SPECTRUM ESTIMATES
2 //OS : Windows 10
3 // S c i l a b 5 . 5 . 2
4

5 clear all;

6 clc;

7 close;

8

9 Q = 10; // Qua l i t y f a c t o r
10 N = 1000; // Length o f the sample s equence
11 // B a r t l e t t Method
12 F_Bartlett = Q/(1.11*N);

13 disp(F_Bartlett , ’ Frequency Re s o l u t i o n o f B a r t l e t t
Power Spectrum Est imat i on ’)

14 //Welch Method
15 F_Welch = Q/(1.39*N);

16 disp(F_Welch , ’ Frequency Re s o l u t i o n o f Welch Power
Spectrum Est imat i on ’)

17 //Blackmann−Tukey Method

37

18 F_Blackmann_Tukey = Q/(2.34*N);

19 disp(F_Blackmann_Tukey , ’ Frequency Re s o l u t i o n o f
Blackmann Tukey Power Spectrum Est imat i on ’)

20

21

22 //Output
23 // Frequency Re s o l u t i o n o f B a r t l e t t Power Spectrum

Est imat i on
24 //
25 // 0 . 009009
26 //
27 // Frequency Re s o l u t i o n o f Welch Power Spectrum

Est imat i on
28 //
29 // 0 . 0071942
30 //
31 // Frequency Re s o l u t i o n o f Blackmann Tukey Power

Spectrum Es t i
32 // mation
33 // 0 . 0042735

38

Experiment: 9

Continuous Time Fourier
Transform Of An Exponential
Signal

Scilab code Solution 9.9 9

1 //CONTINUOUS TIME FOURIER TRANSFORM OF A EXPONENTIAL
SIGNAL

2 //OS : Windows 10
3 // S c i l a b 5 . 5 . 2
4

5 clear all;

6 clc;

7 close;

8

9 // Cont inuous Time Exponen t i a l S i g n a l x (t)= exp(−A∗ t)
u (t) , A>0

10

11 // Analog S i g n a l

39

Figure 9.1: 9

Figure 9.2: 9

40

12 A =1; // Amplitude
13 Dt = 0.005;

14 t = 0:Dt:10;

15 xt = exp(-A*t);

16

17 // Continuous−t ime Fou r i e r Transform
18 Wmax = 2*%pi*1; // Analog Frequency = 1Hz
19 K = 4;

20 k = 0:(K/1000):K;

21 W = k*Wmax/K;

22 XW = xt* exp(-sqrt(-1)*t’*W) * Dt;

23 XW_Mag = abs(XW);

24 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from −
Wmax to Wmax

25 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag (2:1001)];

26 [XW_Phase ,db] = phasemag(XW);

27 XW_Phase = [-mtlb_fliplr(XW_Phase),XW_Phase (2:1001)

];

28

29 // P l o t t i n g Cont inuous Time S i g n a l
30 figure

31 a = gca();

32 a.y_location = ” o r i g i n ”;
33 plot(t,xt);

34 xlabel(’ t i n s e c . ’);
35 ylabel(’ x (t) ’)
36 title(’ Cont inuous Time S i g n a l ’)
37

38 // P l o t t i n g Magnitude Response o f CTS
39 figure

40 subplot (2,1,1);

41 a = gca();

42 a.y_location = ” o r i g i n ”;
43 plot(W,XW_Mag);

44 xlabel(’ Frequency i n Radians / Seconds−−−> W’);
45 ylabel(’ abs (X(jW)) ’)
46 title(’ Magnitude Response (CTFT) ’)
47

41

48 // P l o t t i n g Phase Reponse o f CTS
49 subplot (2,1,2);

50 a = gca();

51 a.y_location = ” o r i g i n ”;
52 a.x_location = ” o r i g i n ”;
53 plot(W,XW_Phase*%pi /180);

54 xlabel(’ Frequency i n
Radians / Seconds−−−> W’);

55 ylabel(’
<X

(jW) ’)
56 title(’ Phase Response (CTFT) in Radians ’)

42

Experiment: 10

FIR Band Pass Filter - Remez
Algorithm-LPF

Scilab code Solution 10.10 10

1 //FIR BAND PASS FILTER − REMEZ ALGORITHM −FOR LPF
2 //OS : Windows 10
3 // S c i l a b 5 . 5 . 2
4

5 //Band Pass F i l t e r o f l e n g t h M = 16
6 //Lower Cuto f f f r e qu en cy fp = 0 . 2 and Upper Cuto f f

f r e qu en cy f s = 0 . 3
7

8 clear all;

9 clc;

10 close;

11 hn = 0;

12 hm = 0;

13 hn=eqfir (16 ,[0 .1;.2 .35;.425 .5],[0 1 0],[10 1 10])

;//number o f c o s i n e f u n c t i o n s , pa s s band magnitude
&s top band , we i gh t i n g f u n c t i o n

14 [hm ,fr]= frmag(hn ,256);

43

Figure 10.1: 10

15 disp(hn, ’ The F i l t e r C o e f f i c i e n t s a r e : ’)
16 figure

17 plot (.5*(0:255) /256 ,20* log10(frmag(hn ,256)));

18 a = gca();

19 xlabel(’ Normal i zed D i g i t a l Frequency f r ’);
20 ylabel(’ Magnitude i n dB ’);
21 title(’ Frequency Response o f FIR BPF us i ng REMEZ

a l g o r i t hm M=16 ’)
22 xgrid (2)

23

24 //Output
25 //
26 // The F i l t e r C o e f f i c i e n t s a r e :
27 //
28 // −0.0395487
29 // 0 . 0232284
30 // 0 . 0480681
31 // −0.0218794
32 // 0 . 0975735
33 // −0.1012773
34 // −0.2880134
35 // 0 . 2847346
36 // 0 . 2847346

44

37 // −0.2880134
38 // −0.1012773
39 // 0 . 0975735
40 // −0.0218794
41 // 0 . 0480681
42 // 0 . 0232284
43 // −0.0395487
44 //

45

Appendix

Scilab code AP 11 clear all;

2 clc;

3 close;

4

5 function [G,H,x]= RepetitionCode(n,k,m)

6 // Rep e t i t i o n Codes
7 //n =b lo ck o f i d e n t i c a l ’ n ’ b i t s
8 //k =1 one b i t
9 //m = 1 ; / / b i t va l u e = 1
10 I = eye(n-k,n-k);// I d e n t i t y matr ix
11 P = ones(1,n-k);// c o e f f i c i e n t matr ix
12 H = [I P’]; // pa r i t y −check matr ix
13 G = [P 1]; // g e n e r a t o r matr ix
14 x = m.*G; // code word
15 disp(G, ’ g e n e r a t o r matr ix ’);
16 disp(H, ’ p a r i t y −check matr ix ’);
17 disp(x, ’ code word f o r b ina ry one input ’);
18 endfunction

RepetitionCode

Scilab code AP 21 clear all;

2 clc;

3 close;

4

5 function[st,mt]= DS_Spread_Spectrum(bt,ct_polar)

6 // Genera t i on o f waveforms i n DS/BPSK spread spectrum

46

t r a n sm i t t e r
7 // bt : Input Data Sequence (b i p o l a r fo rmat)
8 // c t p o l a r : Sp r ead ing code (b i p o l a r fo rmat)
9 Ft = 0:0.01:1;

10 // bt = [1 ∗ ones (1 ,N) −1∗ones (1 ,N)] ;
11 t = 0: length(bt) -1;

12 // c t p o l a r = [−1 , −1 ,1 ,1 ,1 , −1 ,1 , −1 , −1 ,1 ,1 ,1 , −1 ,1] ;
13 mt = bt.* ct_polar;

14 Carrier = 2*sin(Ft*2*%pi);

15 st = [];

16 for i = 1: length(mt)

17 st = [st mt(i)*Carrier];

18 end

19

20 figure

21 subplot (3,1,1)

22 a =gca();

23 a.x_location = ” o r i g i n ”;
24 a.y_location = ” o r i g i n ”;
25 a.data_bounds = [0,-2;20,2];

26 plot2d2(t,bt ,5)

27 xlabel(’

t ’)
28 ylabel(’

b (t) ’)
29 title(’ Data ’)
30 subplot (3,1,2)

31 a =gca();

32 a.x_location = ” o r i g i n ”;
33 a.y_location = ” o r i g i n ”;
34 a.data_bounds = [0,-2;20,2];

35 plot2d2(t,ct_polar ,5)

36 xlabel(’

t ’)
37 ylabel(’

47

c (t) ’)
38 title(’ Sp r ead ing code ’)
39 subplot (3,1,3)

40 a =gca();

41 a.x_location = ” o r i g i n ”;
42 a.y_location = ” o r i g i n ”;
43 a.data_bounds = [0,-2;20,2];

44 plot2d2(t,mt ,5)

45 xlabel(’

t ’)
46 ylabel(’

m(t) ’)
47 title(’ Product S i g n a l ’)
48

49 figure

50 subplot (3,1,1)

51 a =gca();

52 a.x_location = ” o r i g i n ”;
53 a.y_location = ” o r i g i n ”;
54 a.data_bounds = [0,-2;20,2];

55 plot2d2(t,mt ,5)

56 xlabel(’

t ’)
57 ylabel(’

m(t) ’)
58 title(’ Product S i g n a l ’)
59 subplot (3,1,2)

60 a =gca();

61 a.x_location = ” o r i g i n ”;
62 a.y_location = ” o r i g i n ”;
63 a.data_bounds = [0,-2;20,2];

64 plot(Carrier)

65 xlabel(’

48

t ’)
66 ylabel(’

c (t) ’)
67 title(’ C a r r i e r S i g n a l ’)
68 subplot (3,1,3)

69 a =gca();

70 a.x_location = ” o r i g i n ”;
71 a.y_location = ” o r i g i n ”;
72 a.data_bounds = [0,-2;20,2];

73 plot(st)

74 xlabel(’

t ’)
75 ylabel(’

s (t) ’)
76 title(’DS/BPSK s i g n a l ’)
77 endfunction

DSSS

49

	
	Power spectral density estimation using n-point dft
	PSD estimation via window based technique
	Direct Sequence Spread Spectrum(DS-BPSK)
	Constellation Diagram For Binary PSK
	Repetition Code
	Continuous Time Fourier Series of Sine Signal
	Spectrum of Signal (Frequency Response)-Blackmann Window
	Comparision Of Different Power Spectrum Estimates
	Continuous Time Fourier Transform Of An Exponential Signal
	FIR Band Pass Filter - Remez Algorithm-LPF

