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Experiment: 1

Waveform generation using
discrete time signals

Scilab code Solution 1.1 Waveform generation using DT signals

1 // Expt 1 . Waveform g e n e r a t i o n u s i n g d i s c r e t e t ime
s i g n a l s u s i n g S c i l a b

2 // O. S . Windows 10
3 // // S c i l a b 6 . 0 . 0
4 // Genera t i on o f un i t s t e p D i s c r e t e s i g n a l
5 clear;

6 clc;

7 t=0:4;

8 y=ones (1,5);

9 subplot (3,2,1);

10 plot2d3 (t,y);

11 xlabel( ’ n ’ );
12 ylabel( ’ u ( n ) ’ );
13 title( ’ Unit Step D i s c r e t e S i g n a l ’ );
14

15 // Genera t i on o f Unit Ramp D i s c r e t e s i g n a l
16 n1=0:8;
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Figure 1.1: Waveform generation using DT signals

17 y1=n1;

18 subplot (3,2,2);

19 plot2d3 (n1,y1);

20 xlabel( ’ n ’ );
21 ylabel( ’ r ( n ) ’ );
22 title( ’ Unit Ramp D i s c r e t e S i g n a l ’ );
23

24 // Genera t i on o f Growing Exponen t i a l D i s c r e t e s i g n a l
25 n1=0:8;

26 y1=n1;

27 y2=exp(n1);

28 subplot (3,2,3);

29 plot2d3 (n1,y2);

30 xlabel( ’ n ’ );
31 ylabel( ’ x ( n ) ’ );
32 title( ’ Growing Exponen t i a l D i s c r e t e S i g n a l ’ );
33

34 // Genera t i on o f Decaying Exponen t i a l D i s c r e t e s i g n a l
35 n1=0:8;

36 y1=n1;
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37 y2=exp(-n1);

38 subplot (3,2,4);

39 plot2d3 (n1,y2);

40 xlabel( ’ n ’ );
41 ylabel( ’ x ( n ) ’ );
42 title( ’ Decaying Exponen t i a l D i s c r e t e S i g n a l ’ );
43

44 // Genera t i on o f s i n u s o i d a l d i s c r e t e s i g n a l
45 n1 =0:25;

46 y1=n1;

47 y2=sin(n1);

48 subplot (3,2,5);

49 plot2d3 (n1,y2);

50 xlabel( ’ n ’ );
51 ylabel( ’ x ( n ) ’ );
52 title( ’ S i n u s o i d a l D i s c r e t e S i g n a l ’ );
53

54 // Genera t i on o f un i t impu l s e s equence
55 l=7;

56 n=-l:l;

57 x=[zeros(1,l),1,zeros(1,l)];

58 b=gca();

59 b.y_location=”middle ”;
60 subplot (3,2,6);

61 plot2d3( ’ gnn ’ ,n,x);
62 a= gce ();

63 a. children (1) . thickness =5;

64 xtitle ( ’ Unit Sample Sequence ’ , ’ n ’ , ’ x [ n ] ’ );
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Experiment: 2

Z-transform and pole zero plot
of a system

Scilab code Solution 2.1 Z transform of DT sequence

1 //Expt2 : To draw the po le−z e r o p l o t
2 //O. S : Windows 1 0 ;
3 // S c i l a b : 6 . 0 . 0
4 clear;

5 clc ;

6 //Z− t r an s f o rm o f [ 1 0 3 −1 2 ]
7 clear;

8 clc ;

9 close ;

10 function[za]= ztransfer(sequence ,n)

11 z=poly(0, ’ z ’ , ’ r ’ )
12 za=sequence *(1/z)^n’

13 endfunction

14 x1=[1 0 3 -1 2];

15 n=0: length(x1) -1;

16 zz=ztransfer(x1,n);

17 // D i sp l ay the r e s u l t i n command window
18 disp (zz,”Z−t r an s f o rm o f s equence i s : ”);
19 // Expected Output :
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Figure 2.1: Pole Zero Plot of a system

20 //Z−t r an s f o rm o f s equence i s :
21 // 2 4
22 // 2 − z + 3 z + z
23 // −−−−−−−−−−−−−−−
24 // 4
25 // z
26 disp( ’ROC i s the e n t i r e p l ane exc ep t z = 0 ’ );
27 //ROC i s the e n t i r e p l ane exc ep t z = 0

Scilab code Solution 2.2 Pole Zero Plot of a system

1 //Expt2 : To draw the po le−z e r o p l o t
2 //O. S : Windows 1 0 ;
3 // S c i l a b : 6 . 0 . 0
4 clear;

5 clc ;
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6 close ;

7 z=%z

8 H1Z =((z)*(z-1))/((z -0.25) *(z-0.5));

9 xset( ’ window ’ ,1);
10 plzr(H1Z);
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Experiment: 3

Linear convolution

Scilab code Solution 3.1 Linear Convolution

1 // Exper iment no 3
2 // L in ea r Convo lu t i on
3 // Sc iLab v e r s i o n : 6 . 0 . 0
4 // O. S . : Windows 10
5 clc;

6 close ;

7 t=0:6;

8 x=[1,2,1,2,1,3,2];

9 subplot (2,2,1);

10 plot2d3 (t,x);

11 xlabel( ’ n ’ );
12 ylabel( ’ x ( n ) ’ );
13 title( ’ Input s equence x ( n ) ’ );
14

15 t=0:5;

16 h=[1,-1,2,-2,1,1];

17 subplot (2,2,2);

18 plot2d3 (t,h);

19 xlabel( ’ n ’ );
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Figure 3.1: Linear Convolution

20 ylabel( ’ h ( n ) ’ );
21 title( ’ Impul se s equence h ( n ) ’ );
22

23 m = length(x);

24 n = length(h);

25 // D i r e c t Convo lu t i on Sum Formula
26 for i = 1:n+m-1

27 conv_sum = 0;

28 for j = 1:i

29 if (((i-j+1) <= n)&(j <= m))

30 conv_sum = conv_sum + x(j)*h(i-j+1);

31 end;

32 y(i) = conv_sum;

33 end;

34 end;

35 disp(y, ’ y= ’ )
36 subplot (2,2,3);

37 l=length(y);

38 t=0:(l-1);

39 plot2d3 (t,y);
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40 xlabel( ’ n ’ );
41 ylabel( ’ y ( n ) ’ );
42 title( ’ Convo lu t i on o f x ( n ) and h ( n ) ’ );
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Experiment: 4

Auto co-relation and cross
co-relation

Scilab code Solution 4.1 Auto correlation

1 // Exper iment no 4
2 //Auto C o r r e l a t i o n
3 // Sc iLab v e r s i o n : 6 . 0 . 0
4 // O. S . : Windows 10
5 clear;

6 clc;

7 close;

8 x = input( ’ Enter the g i v en d i s c r e t e t ime s equence ’ );
// Enter a s equence x ( n ) ={1 ,2 ,3 ,4}

9 l = length(x);

10 t=0:l-1;

11 subplot (1,2,1);

12 plot2d3 (t,x);

13 xlabel( ’ n ’ );
14 ylabel( ’ x ( n ) ’ );
15 title( ’ Input s equence x ( n ) ’ );
16 h = zeros(1,l);
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Figure 4.1: Auto correlation

17 for i = 1:l

18 h(l-i+1) = x(i);

19 end

20 N = 2*l-1;

21 Rxx = zeros(1,N);

22 for i = l+1:N

23 h(i) = 0;

24 end

25 for i = l+1:N

26 x(i) = 0;

27 end

28 for n = 1:N

29 for k = 1:N

30 if(n >= k)

31 Rxx(n) = Rxx(n)+x(n-k+1)*h(k);

32 end

33 end

34 end

35 disp(Rxx , ’ Auto C o r r e l a t i o n Re su l t i s ’ );// Expected
output Rxx ( n ) ={11 ,20 ,30 ,20 ,11}
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Figure 4.2: Cross corelation

36 L=length(Rxx);

37 t=0:L-1;

38 subplot (1,2,2);

39 plot2d3 (t,Rxx);

40 xlabel( ’ n ’ );
41 ylabel( ’Rxx ( n ) ’ );
42 title( ’ Auto c o r r e l a t i o n o f x ( n ) ’ );

Scilab code Solution 4.2 Cross corelation

1 // Exper iment no 4b
2 // c r o s s c o r r e l a t i o n
3 // Sc iLab v e r s i o n : 6 . 0 . 0
4 // O. S . : Windows 10
5 clc;

6 close ;
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7 t1=0:4;

8 x1=[0,1,2,3,4];

9 subplot (2,2,1);

10 plot2d3 (t1,x1);

11 xlabel( ’ n ’ );
12 ylabel( ’ x1 ( n ) ’ );
13 title( ’ Input s equence x1 ( n ) ’ );
14

15 t2=0:4;

16 x2=[0,1,5,6,4];

17 subplot (2,2,2);

18 plot2d3 (t2,x2);

19 xlabel( ’ n ’ );
20 ylabel( ’ x2 ( n ) ’ );
21 title( ’ Input s equence x2 ( n ) ’ );
22

23 y=xcorr(x1,x2);

24 l=length(y);

25 t3=0:l-1;

26 subplot (2,2,3);

27 plot2d3 (t3,y);

28 xlabel( ’ n ’ );
29 ylabel( ’ y ( n ) ’ );
30 title( ’ c r o s s c o r r e l a t i o n o fx1 ( n ) and x2 ( n ) ’ );
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Experiment: 5

Implementation of DFT and
IDFT

Scilab code Solution 5.1 Implementation of DFT

1 // Expt 5 . Implementat ion o f 8 po i n t DFT
2 // O. S . Windows 10
3 // // S c i l a b 6 . 0 . 0
4

5 clear;

6 clc;

7 x1=input( ’ Enter a s equence ’ );// input a s equence x1
={1 , 1 , 1 , 1 , 0 , 0 , 0 , 0}

8 //DFT Computation
9 X1 = fft (x1 , -1);

10

11 disp(X1,”X1 [ k ]=”);// Expected outpput s e qu en c e s X1 [ k ]
i n command window {4 ,1 −2.4142136 i , 0 , 1 −0 .4142136 i

, 0 , 1+0 . 4142136 i , 0 , 1+2 . 4142136 i }
12 mag = abs (X1);

13 subplot (1,2,1);

14 plot2d3 (mag);
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Figure 5.1: Implementation of DFT

15 xlabel( ’ k ’ );
16 ylabel( ’ | y ( k ) | ’ );
17 title( ’ magnitude r e s p on s e ’ );
18

19 x1= atan ( imag (X1),real (X1));

20 phase =x1 *(180/ %pi );

21 subplot (1,2,2);

22 plot2d3 (phase);

23 xlabel( ’ k ’ );
24 ylabel( ’ a rg ( y ( k ) ) ’ );
25 title( ’ Phase r e s p on s e ’ );

Scilab code Solution 5.2 Implementation of IDFT

1 // Expt 5 . IDFT o f s equence X[ k ]=[5 ,0 ,1 − j , 0 , 1 , 0 , 1+ j
, 0 ]

2 // O. S . Windows 10
3 // // S c i l a b 6 . 0 . 0
4 clear;

19



5 clc ;

6 clear;

7 clc ;

8 j=sqrt(-1);

9 X = [5,0,1-j,0,1,0,1+j,0];

10 //IDFT Computation
11 x = fft (X , 1);

12 // D i sp l ay s e qu en c e s x [ n ] i n command window
13 disp(x,”x [ n]=”);
14 // outputx [ n ] = [ 1 , 0 . 7 5 , 0 . 5 , 0 . 2 5 , 1 , 0 . 7 5 , 0 . 5 , 0 . 2 5 ]
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Experiment: 6

circular convolution using FFT

Scilab code Solution 6.1 Circular Convolution using FFT

1 // Expt 6 . C i r c u l a r Convo lu t i on u s i n g FFT
2 // O. S . Windows 10
3 // // S c i l a b 6 . 0 . 0
4 // x1 [ n ]=[1 , −1 , −2 ,3 , −1]
5 // x2 [ n ]= [ 1 , 2 , 3 ]
6 clear;

7 clc ;

8 close ;

9 x1=[1,-1,-2,3,-1];

10 x2=[1,2 ,3];

11 //Loop f o r z e r o padding the sma l l e r s equence out o f
the two

12 n1=length(x1);

13 n2=length(x2);

14 n3=n2-n1;

15 if (n3 >=0) then

16 x1=[x1,zeros(1,n3)];

17 else

18 x2=[x2,zeros(1,-n3)];
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Figure 6.1: Circular Convolution using FFT

19 end

20 //DFT Computation
21 X1=fft(x1 ,-1);

22 X2=fft(x2 ,-1);

23 Y=X1.*X2;

24 //IDFT Computation
25 y=fft(Y,1);

26 n4=length(y);

27 // D i sp l ay s equence y [ n ] i n command window
28 disp(y,”y [ n]=”);
29 // P l o t t i n g o f s e qu en c e s
30 t=0:n1 -1;

31 subplot (2,2,1);

32 plot2d3 (t,x1);

33 xlabel( ’ n ’ );
34 ylabel( ’ x1 ( n ) ’ );
35 title( ’ F i r s t s equence x1 [ n ] ] ’ );
36

37 t1=0:n1 -1;

38 subplot (2,2,2);
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39 plot2d3 (t1,x2);

40 xlabel( ’ n ’ );
41 ylabel( ’ x2 ( n ) ’ );
42 title( ’ Second s equence x2 [ n ] ’ );
43

44 t2=0:n1 -1;

45 subplot (2,2,3);

46 plot2d3 (t1,y);

47 xlabel( ’ n ’ );
48 ylabel( ’ y ( n ) ’ );
49 title( ’ C i r c u l a r Convo lu t i on o f x1 [ n ] & x2 [ n ] ’ );
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Experiment: 7

Fast convolution using Overlap
add/Overlap save method

Scilab code Solution 7.1 Fast convolution using overlap save method

1 // Expt 7 Fast c o nv o l u t i o n u s i n g ov e r l a p Save method
2 //O. S . Windows 10
3 // S c i l a b 6 . 0 . 0
4 clc;

5 clear all;

6 x =[1,2,-1,2,3,-2,-3,-1,1,1,2,-1];

7 h =[1,2,3,-1];

8 n1 = length(x);

9 n2 = length(h);

10 N = n1+n2 -1;

11 h1 = [h zeros(1,N-n1)];

12 n3 = length(h1);

13 y = zeros(1,N);

14 x1 = [zeros(1,n3 -n2) x zeros(1,n3)];

15 H = fft(h1 ,-1);

16 for i = 1:n2:N

17 y1 = x1(i:i+(2*(n3-n2)));
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Figure 7.1: Fast convolution using overlap save method

18 y2 = fft(y1);

19 y3 = y2.*H;

20 y4 = round(fft(y3 ,1));

21 y(i:(i+n3-n2)) = y4(n2:n3);

22 end

23 subplot (3,1,1);

24 plot2d3(x(1:n1));

25 title( ’ Input Sequence x ( n ) ’ );
26 xlabel( ’ Time −−−> ’ );
27 ylabel( ’ Amplitude −−−> ’ );
28 subplot (3,1,2);

29 plot2d3(h(1:n2));

30 title( ’ Input Sequence h ( n ) ’ );
31 xlabel( ’ Time −−−> ’ );
32 ylabel( ’ Amplitude −−−> ’ );
33 subplot (3,1,3);

34 disp( ’ Fast Convo lu t i on Using Over lap Save Method = ’
);

35 disp(y(1:N));

36 plot2d3(y(1:N));

25



Figure 7.2: Fast convolution using overlap add method

37 title( ’ Block Convo lu t i on Using Over lap Save Method ’ )
;

38 xlabel( ’ Time −−−> ’ );
39 ylabel( ’ Amplitude −−−> ’ );
40

41 // r e s u l t : Fast Convo lu t i on Using Over lap Save Method
=

42 // 1 4 6 5 2 11 0 −16
−8 3 8 5 3 −5 1

Scilab code Solution 7.2 Fast convolution using overlap add method

1 // Expt 7 Fast c o nv o l u t i o n u s i n g ov e r l a p add method
2 //O. S . Windows 10
3 // S c i l a b 6 . 0 . 0
4

26



5 clc;

6 clear;

7 x = [1,2,-1,2,3,-2,-3,-1,1,1,2,-1];

8 h = [1,2,3,-1];

9 n1 = length(x);

10 n2 = length(h);

11 N = n1+n2 -1;

12 y = zeros(1,N);

13 h1 = [h zeros(1,n2 -1)];

14 n3 = length(h1);

15 y = zeros(1,N+n3 -n2);

16 H = fft(h1 ,-1);

17 for i = 1:n2:n1

18 if i<=(n1+n2 -1)

19 x1 = [x(i:i+n3 -n2) zeros(1,n3-n2)];

20 else

21 x1 = [x(i:n1) zeros(1,n3-n2)];

22 end

23 x2 = fft(x1 ,-1);

24 x3 = x2.*H;

25 x4 = round(fft(x3 ,1));

26 if (i==1)

27 y(1:n3) = x4(1:n3);

28 else

29 y(i:i+n3 -1) = y(i:i+n3 -1)+x4(1:n3);

30 end

31 end

32 subplot (3,1,1);

33 plot2d3(x(1:n1));

34 title( ’ Input Sequence x ( n ) ’ );
35 xlabel( ’ Time −−−> ’ );
36 ylabel( ’ Amplitude −−−> ’ );
37 subplot (3,1,2);

38 plot2d3(h(1:n2));

39 title( ’ Input Sequence h ( n ) ’ );
40 xlabel( ’ Time −−−> ’ );
41 ylabel( ’ Amplitude −−−> ’ );
42 subplot (3,1,3);
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43 disp( ’ Fast Convo lu t i on Using Over lap Add Method = ’ )
;

44 disp(y(1:N));

45 plot2d3(y(1:N));

46 title( ’ Fast Convo lu t i on Using Over lap Add Method ’ );
47 xlabel( ’ Time −−−> ’ );
48 ylabel( ’ Amplitude −−−> ’ );
49 // Re su l t : Fast Convo lu t i on Using Over lap Add Method

=
50 // 1 4 6 5 2 11 0 −16

−8 3 8 5 3 −5 1
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Experiment: 8

Realization of FIR system

Scilab code Solution 8.1 Program to determine filter coefficients obtained
by sampling

1 // Expt 8 . Program to de t e rmine f i l t e r c o e f f i c i e n t s
ob ta i n ed by sampl ing :

2 // O. S . Windows 10
3 // S c i l a b 6 . 0 . 1
4 clear;

5 clc ;

6 close ;

7 N=7;

8 U=1; // Zero Adjust
9 for n=0+U:1:N-1+U

10 h(n)=(1+2* cos (2*%pi*(n-U-3)/7))/N

11 end

12 disp(h,” F i l t e r C o e f f i c i e n t s , h ( n )=”)
13 // F i l t e r C o e f f i c i e n t s , h ( n )=
14

15 // −0.1145625
16 // 0 . 0792797
17 // 0 . 3209971
18 // 0 . 4285714
19 // 0 . 3209971
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20 // 0 . 0792797
21 // −0.1145625

30



Experiment: 9

Design of FIR filter using
frequency sampling method.

Scilab code Solution 9.1 Design of FIR LPF using frequency sampling
method

1 //Exp 9 . FIR LPF us i ng f r e qu en cy Sampl ing Method
2 //O. S . Windows 1 0 ;
3 // S c i l a b 6 . 0 . 0 .
4 clc ;

5 clear ;

6 N =15;

7 U=1;

8 for n=0+U:1:N-1+U

9 h(n)=(1+ cos (2*%pi*(7-n)/N))/N;

10 end

11 [hz ,f]= frmag(h,256);

12 hz_dB =20* log10(hz)./max(hz);

13 figure;

14 plot (2*f,hz_dB);

15 a=gca();

16 xlabel( ’ Frequency wpi ’ );
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Figure 9.1: Design of FIR LPF using frequency sampling method

17 ylabel( ’ Magnitude i n dB ’ ) ;

18 title ( ’ Frequency Response o f FIR LPF ’ );
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Experiment: 10

Design of FIR filter using
windowing technique.

Scilab code Solution 10.1 FIR Filter using rectangular window

1 //Expt . 10 Des ign o f FIR f i l t e r (Band Pass ) u s i n g
windowing t e chn i qu e ( Ka i s e r Window)

2 // O. S . Windows 10
3 // S c i l a b 6 . 0 . 0 .
4 clear;

5 clc ;

6 close ;

7 wsf =200* %pi;// rad / s e c
8 ws1 =20* %pi;// rad / s e c
9 ws2 =80* %pi;// rad / s e c

10 wp1 =40* %pi;// rad / s e c
11 wp2 =60* %pi;// rad / s e c
12 as=30 //dB
13 ap=0.5 //dB
14 B=min(wp1 -ws1 ,ws2 -wp2);

15 wc1=wp1 -B/2;

16 wc2=wp2+B/2;
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Figure 10.1: FIR Filter using rectangular window

17 wc1=wc1*2*%pi/wsf;

18 wc2=wc2*2*%pi/wsf;

19 delta1 =10^( -0.05* as);

20 delta2 =(10^(0.05* as) -1) /(10^(0.05* as)+1);

21 delta=min(delta1 ,delta2);

22 alphas =-20* log10(delta);

23 alpha =0.5842*( alphas -21) ^0.4+0.07886*( alphas -21)

24 D=(alphas -7.95) /14.36;

25 N1=wsf*D/B+1;

26 N=ceil(N1);

27 U=ceil(N/2);

28 win_l=window( ’ r e ’ ,N,alpha);
29 for n=-floor(N/2)+U:1: floor(N/2)+U

30 if n==ceil(N/2);

31 hd(n)=0.4;

32 else

33 hd(n)=(sin (0.7* %pi*(n-U))-sin (0.3* %pi*(n-U)))/(%pi*(

n-U));

34 end

35 h(n)=hd(n)*win_l(n);

34



36 end

37 [hzm ,fr ]= frmag (h ,256) ;

38 hzm_dB = 20* log10 (hzm)./ max ( hzm );

39 figure

40 plot (2*fr , hzm_dB )

41 a= gca ();

42 xlabel ( ’ Frequency w∗ p i ’ );
43 ylabel ( ’ Magnitude i n dB ’ );
44 title ( ’ Frequency Response o f g i v en BPF us i ng

r e c t a n g u l a r Window ’ );
45 xgrid (2);

46 disp(h,” F i l t e r C o e f f i c i e n t s , h ( n )=”);

35



Experiment: 11

Design of IIR filter using
impulse invariant technique.

Scilab code Solution 11.1 Design of IIR Filter using Impulse Invarient
technique

1 //Expt . 1 1 : To Des ign the F i l t e r u s i n g Impul se
I n v a r i e n t Method

2 // O. S . Windows 10
3 // S c i l a b : 6 . 0 . 0
4 clear;

5 clc ;

6 close ;

7 s=%s;

8 T=0.2;

9 HS=10/(s^2+7*s+10);

10 elts=pfss(HS);

11 disp(elts , ’ F a c t o r i z e d HS = ’ );
12 //Outputs :
13 // Fa c t o r i z e d HS =
14 // ( 1 )
15 // 3 . 3333333
16 // −−−−−−−−−−
17 // 2 + s

36



18 // ( 2 )
19 // −3.3333333
20 // −−−−−−−−−−−
21 // 5 + s
22

23 //The p o l e s comes out to be at −5 and −2
24 p1=-5;

25 p2=-2;

26 z=%z;

27 HZ=T*(( -3.33/(1 -%e^(p1*T)*z^(-1)))+(3.33/(1 - %e^(p2*T

)*z^(-1))))

28 disp(HZ, ’HZ = ’ );
29 // Re su l t :
30 //HZ =
31 // 0 . 2014254 z
32 // −−−−−−−−−−−−−−−−−−−−−−−−−−−
33 // 2
34 // 0 . 2465970 − 1 . 0381995 z + z
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Experiment: 12

Design of IIR filters using
Bilinear
transformation/Butterworth
Technique.

Scilab code Solution 12.1 IIR filter design using Bilinear Transformation
Technique

1 //Expt 12 Des ign o f IIR f i l t e r s u s i n g B i l i n e a r
t r a n s f o rma t i o n / Butte rworth Technique .

2 //To Find out B i l i n e a r Trans f o rmat i on o f HS=2/(( s+1)
∗ ( s+2) ∗ ( s+3) )

3 // O. S . Windows 1 0 ;
4 // S c i l a b 6 . 0 . 0
5 clear;

6 clc ;

7 close ;

8 s=%s;

9 z=%z;

10 HS=2/((s+1)*(s+2)*(s+3));

11 T=1;

12 HZ=horner(HS ,(2/T)*(z-1)/(z+1));
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13 disp(HZ, ’H( z ) = ’ );
14

15 //H( z ) =
16

17 // . . . 2 3
18 // 2 + 6 z + 6 z + 2 z
19 // −−−−−−−−−−−−−−−−−
20 // 2 3
21 // −4z − 8 z + 60 z
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Experiment: 13

Design of IIR Filters
Chebyshev

Scilab code Solution 13.1 To Design an analog Chebyshev Filter with
Given Specifications

1 //Expt 13 To Des ign an ana l og Chebyshev F i l t e r with
Given S p e c i f i c a t i o n s

2 // O. S . Windows 1 0 ;
3 // S c i l a b 6 . 0 . 0
4 clear;

5 clc ;

6 //
7 os=2;

8 op=1;

9 ap=3; //db
10 as=16; //db
11 e1=1/ sqrt (2);

12 l1=0.1;

13 epsilon=sqrt (1/(e1^2) -1);

14 lambda=sqrt (1/(l1^2) -1);

15 N=acosh(lambda/epsilon)/acosh(os/op);

16 disp(ceil(N), ’ Order o f the f i l t e r , N = ’ );
17

40



18 // Re su l t :
19 //Order o f the f i l t e r , N =
20

21 // 3 .

41
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