
Scilab Manual for
Digital Signal Processing
by Prof Akhtar Nadaf

Electronics and Telecommunication
Engineering

Nagesh Karajagi Orchid College Of
Engineering & Technology, Solapur1

Solutions provided by
Mr Akhtar Nadaf

Electronics and Telecommunication Engineering
N K Orchid College Of Engineering & Technology

January 29, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 Waveform generation using discrete time signals 5

2 Z-transform and pole zero plot of a system 8

3 Linear convolution 11

4 Auto co-relation and cross co-relation 14

5 Implementation of DFT and IDFT 18

6 circular convolution using FFT 21

7 Fast convolution using Overlap add/Overlap save method 24

8 Realization of FIR system 29

9 Design of FIR filter using frequency sampling method. 31

10 Design of FIR filter using windowing technique. 33

11 Design of IIR filter using impulse invariant technique. 36

12 Design of IIR filters using Bilinear transformation/Butter-
worth Technique. 38

13 Design of IIR Filters Chebyshev 40

2

List of Experiments

Solution 1.1 Waveform generation using DT signals 5
Solution 2.1 Z transform of DT sequence 8
Solution 2.2 Pole Zero Plot of a system 9
Solution 3.1 Linear Convolution 11
Solution 4.1 Auto correlation 14
Solution 4.2 Cross corelation 16
Solution 5.1 Implementation of DFT 18
Solution 5.2 Implementation of IDFT 19
Solution 6.1 Circular Convolution using FFT 21
Solution 7.1 Fast convolution using overlap save method 24
Solution 7.2 Fast convolution using overlap add method 26
Solution 8.1 Program to determine filter coefficients obtained by

sampling . 29
Solution 9.1 Design of FIR LPF using frequency sampling method 31
Solution 10.1 FIR Filter using rectangular window 33
Solution 11.1 Design of IIR Filter using Impulse Invarient tech-

nique . 36
Solution 12.1 IIR filter design using Bilinear Transformation Tech-

nique . 38
Solution 13.1 To Design an analog Chebyshev Filter with Given

Specifications . 40

3

List of Figures

1.1 Waveform generation using DT signals 6

2.1 Pole Zero Plot of a system 9

3.1 Linear Convolution . 12

4.1 Auto correlation . 15
4.2 Cross corelation . 16

5.1 Implementation of DFT . 19

6.1 Circular Convolution using FFT 22

7.1 Fast convolution using overlap save method 25
7.2 Fast convolution using overlap add method 26

9.1 Design of FIR LPF using frequency sampling method 32

10.1 FIR Filter using rectangular window 34

4

Experiment: 1

Waveform generation using
discrete time signals

Scilab code Solution 1.1 Waveform generation using DT signals

1 // Expt 1 . Waveform g e n e r a t i o n u s i n g d i s c r e t e t ime
s i g n a l s u s i n g S c i l a b

2 // O. S . Windows 10
3 // // S c i l a b 6 . 0 . 0
4 // Genera t i on o f un i t s t e p D i s c r e t e s i g n a l
5 clear;

6 clc;

7 t=0:4;

8 y=ones (1,5);

9 subplot (3,2,1);

10 plot2d3 (t,y);

11 xlabel(’ n ’);
12 ylabel(’ u (n) ’);
13 title(’ Unit Step D i s c r e t e S i g n a l ’);
14

15 // Genera t i on o f Unit Ramp D i s c r e t e s i g n a l
16 n1=0:8;

5

Figure 1.1: Waveform generation using DT signals

17 y1=n1;

18 subplot (3,2,2);

19 plot2d3 (n1,y1);

20 xlabel(’ n ’);
21 ylabel(’ r (n) ’);
22 title(’ Unit Ramp D i s c r e t e S i g n a l ’);
23

24 // Genera t i on o f Growing Exponen t i a l D i s c r e t e s i g n a l
25 n1=0:8;

26 y1=n1;

27 y2=exp(n1);

28 subplot (3,2,3);

29 plot2d3 (n1,y2);

30 xlabel(’ n ’);
31 ylabel(’ x (n) ’);
32 title(’ Growing Exponen t i a l D i s c r e t e S i g n a l ’);
33

34 // Genera t i on o f Decaying Exponen t i a l D i s c r e t e s i g n a l
35 n1=0:8;

36 y1=n1;

6

37 y2=exp(-n1);

38 subplot (3,2,4);

39 plot2d3 (n1,y2);

40 xlabel(’ n ’);
41 ylabel(’ x (n) ’);
42 title(’ Decaying Exponen t i a l D i s c r e t e S i g n a l ’);
43

44 // Genera t i on o f s i n u s o i d a l d i s c r e t e s i g n a l
45 n1 =0:25;

46 y1=n1;

47 y2=sin(n1);

48 subplot (3,2,5);

49 plot2d3 (n1,y2);

50 xlabel(’ n ’);
51 ylabel(’ x (n) ’);
52 title(’ S i n u s o i d a l D i s c r e t e S i g n a l ’);
53

54 // Genera t i on o f un i t impu l s e s equence
55 l=7;

56 n=-l:l;

57 x=[zeros(1,l),1,zeros(1,l)];

58 b=gca();

59 b.y_location=”middle ”;
60 subplot (3,2,6);

61 plot2d3(’ gnn ’ ,n,x);
62 a= gce ();

63 a. children (1) . thickness =5;

64 xtitle (’ Unit Sample Sequence ’ , ’ n ’ , ’ x [n] ’);

7

Experiment: 2

Z-transform and pole zero plot
of a system

Scilab code Solution 2.1 Z transform of DT sequence

1 //Expt2 : To draw the po le−z e r o p l o t
2 //O. S : Windows 1 0 ;
3 // S c i l a b : 6 . 0 . 0
4 clear;

5 clc ;

6 //Z− t r an s f o rm o f [1 0 3 −1 2]
7 clear;

8 clc ;

9 close ;

10 function[za]= ztransfer(sequence ,n)

11 z=poly(0, ’ z ’ , ’ r ’)
12 za=sequence *(1/z)^n’

13 endfunction

14 x1=[1 0 3 -1 2];

15 n=0: length(x1) -1;

16 zz=ztransfer(x1,n);

17 // D i sp l ay the r e s u l t i n command window
18 disp (zz,”Z−t r an s f o rm o f s equence i s : ”);
19 // Expected Output :

8

Figure 2.1: Pole Zero Plot of a system

20 //Z−t r an s f o rm o f s equence i s :
21 // 2 4
22 // 2 − z + 3 z + z
23 // −−−−−−−−−−−−−−−
24 // 4
25 // z
26 disp(’ROC i s the e n t i r e p l ane exc ep t z = 0 ’);
27 //ROC i s the e n t i r e p l ane exc ep t z = 0

Scilab code Solution 2.2 Pole Zero Plot of a system

1 //Expt2 : To draw the po le−z e r o p l o t
2 //O. S : Windows 1 0 ;
3 // S c i l a b : 6 . 0 . 0
4 clear;

5 clc ;

9

6 close ;

7 z=%z

8 H1Z =((z)*(z-1))/((z -0.25) *(z-0.5));

9 xset(’ window ’ ,1);
10 plzr(H1Z);

10

Experiment: 3

Linear convolution

Scilab code Solution 3.1 Linear Convolution

1 // Exper iment no 3
2 // L in ea r Convo lu t i on
3 // Sc iLab v e r s i o n : 6 . 0 . 0
4 // O. S . : Windows 10
5 clc;

6 close ;

7 t=0:6;

8 x=[1,2,1,2,1,3,2];

9 subplot (2,2,1);

10 plot2d3 (t,x);

11 xlabel(’ n ’);
12 ylabel(’ x (n) ’);
13 title(’ Input s equence x (n) ’);
14

15 t=0:5;

16 h=[1,-1,2,-2,1,1];

17 subplot (2,2,2);

18 plot2d3 (t,h);

19 xlabel(’ n ’);

11

Figure 3.1: Linear Convolution

20 ylabel(’ h (n) ’);
21 title(’ Impul se s equence h (n) ’);
22

23 m = length(x);

24 n = length(h);

25 // D i r e c t Convo lu t i on Sum Formula
26 for i = 1:n+m-1

27 conv_sum = 0;

28 for j = 1:i

29 if (((i-j+1) <= n)&(j <= m))

30 conv_sum = conv_sum + x(j)*h(i-j+1);

31 end;

32 y(i) = conv_sum;

33 end;

34 end;

35 disp(y, ’ y= ’)
36 subplot (2,2,3);

37 l=length(y);

38 t=0:(l-1);

39 plot2d3 (t,y);

12

40 xlabel(’ n ’);
41 ylabel(’ y (n) ’);
42 title(’ Convo lu t i on o f x (n) and h (n) ’);

13

Experiment: 4

Auto co-relation and cross
co-relation

Scilab code Solution 4.1 Auto correlation

1 // Exper iment no 4
2 //Auto C o r r e l a t i o n
3 // Sc iLab v e r s i o n : 6 . 0 . 0
4 // O. S . : Windows 10
5 clear;

6 clc;

7 close;

8 x = input(’ Enter the g i v en d i s c r e t e t ime s equence ’);
// Enter a s equence x (n) ={1 ,2 ,3 ,4}

9 l = length(x);

10 t=0:l-1;

11 subplot (1,2,1);

12 plot2d3 (t,x);

13 xlabel(’ n ’);
14 ylabel(’ x (n) ’);
15 title(’ Input s equence x (n) ’);
16 h = zeros(1,l);

14

Figure 4.1: Auto correlation

17 for i = 1:l

18 h(l-i+1) = x(i);

19 end

20 N = 2*l-1;

21 Rxx = zeros(1,N);

22 for i = l+1:N

23 h(i) = 0;

24 end

25 for i = l+1:N

26 x(i) = 0;

27 end

28 for n = 1:N

29 for k = 1:N

30 if(n >= k)

31 Rxx(n) = Rxx(n)+x(n-k+1)*h(k);

32 end

33 end

34 end

35 disp(Rxx , ’ Auto C o r r e l a t i o n Re su l t i s ’);// Expected
output Rxx (n) ={11 ,20 ,30 ,20 ,11}

15

Figure 4.2: Cross corelation

36 L=length(Rxx);

37 t=0:L-1;

38 subplot (1,2,2);

39 plot2d3 (t,Rxx);

40 xlabel(’ n ’);
41 ylabel(’Rxx (n) ’);
42 title(’ Auto c o r r e l a t i o n o f x (n) ’);

Scilab code Solution 4.2 Cross corelation

1 // Exper iment no 4b
2 // c r o s s c o r r e l a t i o n
3 // Sc iLab v e r s i o n : 6 . 0 . 0
4 // O. S . : Windows 10
5 clc;

6 close ;

16

7 t1=0:4;

8 x1=[0,1,2,3,4];

9 subplot (2,2,1);

10 plot2d3 (t1,x1);

11 xlabel(’ n ’);
12 ylabel(’ x1 (n) ’);
13 title(’ Input s equence x1 (n) ’);
14

15 t2=0:4;

16 x2=[0,1,5,6,4];

17 subplot (2,2,2);

18 plot2d3 (t2,x2);

19 xlabel(’ n ’);
20 ylabel(’ x2 (n) ’);
21 title(’ Input s equence x2 (n) ’);
22

23 y=xcorr(x1,x2);

24 l=length(y);

25 t3=0:l-1;

26 subplot (2,2,3);

27 plot2d3 (t3,y);

28 xlabel(’ n ’);
29 ylabel(’ y (n) ’);
30 title(’ c r o s s c o r r e l a t i o n o fx1 (n) and x2 (n) ’);

17

Experiment: 5

Implementation of DFT and
IDFT

Scilab code Solution 5.1 Implementation of DFT

1 // Expt 5 . Implementat ion o f 8 po i n t DFT
2 // O. S . Windows 10
3 // // S c i l a b 6 . 0 . 0
4

5 clear;

6 clc;

7 x1=input(’ Enter a s equence ’);// input a s equence x1
={1 , 1 , 1 , 1 , 0 , 0 , 0 , 0}

8 //DFT Computation
9 X1 = fft (x1 , -1);

10

11 disp(X1,”X1 [k]=”);// Expected outpput s e qu en c e s X1 [k]
i n command window {4 ,1 −2.4142136 i , 0 , 1 −0 .4142136 i

, 0 , 1+0 . 4142136 i , 0 , 1+2 . 4142136 i }
12 mag = abs (X1);

13 subplot (1,2,1);

14 plot2d3 (mag);

18

Figure 5.1: Implementation of DFT

15 xlabel(’ k ’);
16 ylabel(’ | y (k) | ’);
17 title(’ magnitude r e s p on s e ’);
18

19 x1= atan (imag (X1),real (X1));

20 phase =x1 *(180/ %pi);

21 subplot (1,2,2);

22 plot2d3 (phase);

23 xlabel(’ k ’);
24 ylabel(’ a rg (y (k)) ’);
25 title(’ Phase r e s p on s e ’);

Scilab code Solution 5.2 Implementation of IDFT

1 // Expt 5 . IDFT o f s equence X[k]=[5 ,0 ,1 − j , 0 , 1 , 0 , 1+ j
, 0]

2 // O. S . Windows 10
3 // // S c i l a b 6 . 0 . 0
4 clear;

19

5 clc ;

6 clear;

7 clc ;

8 j=sqrt(-1);

9 X = [5,0,1-j,0,1,0,1+j,0];

10 //IDFT Computation
11 x = fft (X , 1);

12 // D i sp l ay s e qu en c e s x [n] i n command window
13 disp(x,”x [n]=”);
14 // outputx [n] = [1 , 0 . 7 5 , 0 . 5 , 0 . 2 5 , 1 , 0 . 7 5 , 0 . 5 , 0 . 2 5]

20

Experiment: 6

circular convolution using FFT

Scilab code Solution 6.1 Circular Convolution using FFT

1 // Expt 6 . C i r c u l a r Convo lu t i on u s i n g FFT
2 // O. S . Windows 10
3 // // S c i l a b 6 . 0 . 0
4 // x1 [n]=[1 , −1 , −2 ,3 , −1]
5 // x2 [n]= [1 , 2 , 3]
6 clear;

7 clc ;

8 close ;

9 x1=[1,-1,-2,3,-1];

10 x2=[1,2 ,3];

11 //Loop f o r z e r o padding the sma l l e r s equence out o f
the two

12 n1=length(x1);

13 n2=length(x2);

14 n3=n2-n1;

15 if (n3 >=0) then

16 x1=[x1,zeros(1,n3)];

17 else

18 x2=[x2,zeros(1,-n3)];

21

Figure 6.1: Circular Convolution using FFT

19 end

20 //DFT Computation
21 X1=fft(x1 ,-1);

22 X2=fft(x2 ,-1);

23 Y=X1.*X2;

24 //IDFT Computation
25 y=fft(Y,1);

26 n4=length(y);

27 // D i sp l ay s equence y [n] i n command window
28 disp(y,”y [n]=”);
29 // P l o t t i n g o f s e qu en c e s
30 t=0:n1 -1;

31 subplot (2,2,1);

32 plot2d3 (t,x1);

33 xlabel(’ n ’);
34 ylabel(’ x1 (n) ’);
35 title(’ F i r s t s equence x1 [n]] ’);
36

37 t1=0:n1 -1;

38 subplot (2,2,2);

22

39 plot2d3 (t1,x2);

40 xlabel(’ n ’);
41 ylabel(’ x2 (n) ’);
42 title(’ Second s equence x2 [n] ’);
43

44 t2=0:n1 -1;

45 subplot (2,2,3);

46 plot2d3 (t1,y);

47 xlabel(’ n ’);
48 ylabel(’ y (n) ’);
49 title(’ C i r c u l a r Convo lu t i on o f x1 [n] & x2 [n] ’);

23

Experiment: 7

Fast convolution using Overlap
add/Overlap save method

Scilab code Solution 7.1 Fast convolution using overlap save method

1 // Expt 7 Fast c o nv o l u t i o n u s i n g ov e r l a p Save method
2 //O. S . Windows 10
3 // S c i l a b 6 . 0 . 0
4 clc;

5 clear all;

6 x =[1,2,-1,2,3,-2,-3,-1,1,1,2,-1];

7 h =[1,2,3,-1];

8 n1 = length(x);

9 n2 = length(h);

10 N = n1+n2 -1;

11 h1 = [h zeros(1,N-n1)];

12 n3 = length(h1);

13 y = zeros(1,N);

14 x1 = [zeros(1,n3 -n2) x zeros(1,n3)];

15 H = fft(h1 ,-1);

16 for i = 1:n2:N

17 y1 = x1(i:i+(2*(n3-n2)));

24

Figure 7.1: Fast convolution using overlap save method

18 y2 = fft(y1);

19 y3 = y2.*H;

20 y4 = round(fft(y3 ,1));

21 y(i:(i+n3-n2)) = y4(n2:n3);

22 end

23 subplot (3,1,1);

24 plot2d3(x(1:n1));

25 title(’ Input Sequence x (n) ’);
26 xlabel(’ Time −−−> ’);
27 ylabel(’ Amplitude −−−> ’);
28 subplot (3,1,2);

29 plot2d3(h(1:n2));

30 title(’ Input Sequence h (n) ’);
31 xlabel(’ Time −−−> ’);
32 ylabel(’ Amplitude −−−> ’);
33 subplot (3,1,3);

34 disp(’ Fast Convo lu t i on Using Over lap Save Method = ’
);

35 disp(y(1:N));

36 plot2d3(y(1:N));

25

Figure 7.2: Fast convolution using overlap add method

37 title(’ Block Convo lu t i on Using Over lap Save Method ’)
;

38 xlabel(’ Time −−−> ’);
39 ylabel(’ Amplitude −−−> ’);
40

41 // r e s u l t : Fast Convo lu t i on Using Over lap Save Method
=

42 // 1 4 6 5 2 11 0 −16
−8 3 8 5 3 −5 1

Scilab code Solution 7.2 Fast convolution using overlap add method

1 // Expt 7 Fast c o nv o l u t i o n u s i n g ov e r l a p add method
2 //O. S . Windows 10
3 // S c i l a b 6 . 0 . 0
4

26

5 clc;

6 clear;

7 x = [1,2,-1,2,3,-2,-3,-1,1,1,2,-1];

8 h = [1,2,3,-1];

9 n1 = length(x);

10 n2 = length(h);

11 N = n1+n2 -1;

12 y = zeros(1,N);

13 h1 = [h zeros(1,n2 -1)];

14 n3 = length(h1);

15 y = zeros(1,N+n3 -n2);

16 H = fft(h1 ,-1);

17 for i = 1:n2:n1

18 if i<=(n1+n2 -1)

19 x1 = [x(i:i+n3 -n2) zeros(1,n3-n2)];

20 else

21 x1 = [x(i:n1) zeros(1,n3-n2)];

22 end

23 x2 = fft(x1 ,-1);

24 x3 = x2.*H;

25 x4 = round(fft(x3 ,1));

26 if (i==1)

27 y(1:n3) = x4(1:n3);

28 else

29 y(i:i+n3 -1) = y(i:i+n3 -1)+x4(1:n3);

30 end

31 end

32 subplot (3,1,1);

33 plot2d3(x(1:n1));

34 title(’ Input Sequence x (n) ’);
35 xlabel(’ Time −−−> ’);
36 ylabel(’ Amplitude −−−> ’);
37 subplot (3,1,2);

38 plot2d3(h(1:n2));

39 title(’ Input Sequence h (n) ’);
40 xlabel(’ Time −−−> ’);
41 ylabel(’ Amplitude −−−> ’);
42 subplot (3,1,3);

27

43 disp(’ Fast Convo lu t i on Using Over lap Add Method = ’)
;

44 disp(y(1:N));

45 plot2d3(y(1:N));

46 title(’ Fast Convo lu t i on Using Over lap Add Method ’);
47 xlabel(’ Time −−−> ’);
48 ylabel(’ Amplitude −−−> ’);
49 // Re su l t : Fast Convo lu t i on Using Over lap Add Method

=
50 // 1 4 6 5 2 11 0 −16

−8 3 8 5 3 −5 1

28

Experiment: 8

Realization of FIR system

Scilab code Solution 8.1 Program to determine filter coefficients obtained
by sampling

1 // Expt 8 . Program to de t e rmine f i l t e r c o e f f i c i e n t s
ob ta i n ed by sampl ing :

2 // O. S . Windows 10
3 // S c i l a b 6 . 0 . 1
4 clear;

5 clc ;

6 close ;

7 N=7;

8 U=1; // Zero Adjust
9 for n=0+U:1:N-1+U

10 h(n)=(1+2* cos (2*%pi*(n-U-3)/7))/N

11 end

12 disp(h,” F i l t e r C o e f f i c i e n t s , h (n)=”)
13 // F i l t e r C o e f f i c i e n t s , h (n)=
14

15 // −0.1145625
16 // 0 . 0792797
17 // 0 . 3209971
18 // 0 . 4285714
19 // 0 . 3209971

29

20 // 0 . 0792797
21 // −0.1145625

30

Experiment: 9

Design of FIR filter using
frequency sampling method.

Scilab code Solution 9.1 Design of FIR LPF using frequency sampling
method

1 //Exp 9 . FIR LPF us i ng f r e qu en cy Sampl ing Method
2 //O. S . Windows 1 0 ;
3 // S c i l a b 6 . 0 . 0 .
4 clc ;

5 clear ;

6 N =15;

7 U=1;

8 for n=0+U:1:N-1+U

9 h(n)=(1+ cos (2*%pi*(7-n)/N))/N;

10 end

11 [hz ,f]= frmag(h,256);

12 hz_dB =20* log10(hz)./max(hz);

13 figure;

14 plot (2*f,hz_dB);

15 a=gca();

16 xlabel(’ Frequency wpi ’);

31

Figure 9.1: Design of FIR LPF using frequency sampling method

17 ylabel(’ Magnitude i n dB ’) ;

18 title (’ Frequency Response o f FIR LPF ’);

32

Experiment: 10

Design of FIR filter using
windowing technique.

Scilab code Solution 10.1 FIR Filter using rectangular window

1 //Expt . 10 Des ign o f FIR f i l t e r (Band Pass) u s i n g
windowing t e chn i qu e (Ka i s e r Window)

2 // O. S . Windows 10
3 // S c i l a b 6 . 0 . 0 .
4 clear;

5 clc ;

6 close ;

7 wsf =200* %pi;// rad / s e c
8 ws1 =20* %pi;// rad / s e c
9 ws2 =80* %pi;// rad / s e c

10 wp1 =40* %pi;// rad / s e c
11 wp2 =60* %pi;// rad / s e c
12 as=30 //dB
13 ap=0.5 //dB
14 B=min(wp1 -ws1 ,ws2 -wp2);

15 wc1=wp1 -B/2;

16 wc2=wp2+B/2;

33

Figure 10.1: FIR Filter using rectangular window

17 wc1=wc1*2*%pi/wsf;

18 wc2=wc2*2*%pi/wsf;

19 delta1 =10^(-0.05* as);

20 delta2 =(10^(0.05* as) -1) /(10^(0.05* as)+1);

21 delta=min(delta1 ,delta2);

22 alphas =-20* log10(delta);

23 alpha =0.5842*(alphas -21) ^0.4+0.07886*(alphas -21)

24 D=(alphas -7.95) /14.36;

25 N1=wsf*D/B+1;

26 N=ceil(N1);

27 U=ceil(N/2);

28 win_l=window(’ r e ’ ,N,alpha);
29 for n=-floor(N/2)+U:1: floor(N/2)+U

30 if n==ceil(N/2);

31 hd(n)=0.4;

32 else

33 hd(n)=(sin (0.7* %pi*(n-U))-sin (0.3* %pi*(n-U)))/(%pi*(

n-U));

34 end

35 h(n)=hd(n)*win_l(n);

34

36 end

37 [hzm ,fr]= frmag (h ,256) ;

38 hzm_dB = 20* log10 (hzm)./ max (hzm);

39 figure

40 plot (2*fr , hzm_dB)

41 a= gca ();

42 xlabel (’ Frequency w∗ p i ’);
43 ylabel (’ Magnitude i n dB ’);
44 title (’ Frequency Response o f g i v en BPF us i ng

r e c t a n g u l a r Window ’);
45 xgrid (2);

46 disp(h,” F i l t e r C o e f f i c i e n t s , h (n)=”);

35

Experiment: 11

Design of IIR filter using
impulse invariant technique.

Scilab code Solution 11.1 Design of IIR Filter using Impulse Invarient
technique

1 //Expt . 1 1 : To Des ign the F i l t e r u s i n g Impul se
I n v a r i e n t Method

2 // O. S . Windows 10
3 // S c i l a b : 6 . 0 . 0
4 clear;

5 clc ;

6 close ;

7 s=%s;

8 T=0.2;

9 HS=10/(s^2+7*s+10);

10 elts=pfss(HS);

11 disp(elts , ’ F a c t o r i z e d HS = ’);
12 //Outputs :
13 // Fa c t o r i z e d HS =
14 // (1)
15 // 3 . 3333333
16 // −−−−−−−−−−
17 // 2 + s

36

18 // (2)
19 // −3.3333333
20 // −−−−−−−−−−−
21 // 5 + s
22

23 //The p o l e s comes out to be at −5 and −2
24 p1=-5;

25 p2=-2;

26 z=%z;

27 HZ=T*((-3.33/(1 -%e^(p1*T)*z^(-1)))+(3.33/(1 - %e^(p2*T

)*z^(-1))))

28 disp(HZ, ’HZ = ’);
29 // Re su l t :
30 //HZ =
31 // 0 . 2014254 z
32 // −−−−−−−−−−−−−−−−−−−−−−−−−−−
33 // 2
34 // 0 . 2465970 − 1 . 0381995 z + z

37

Experiment: 12

Design of IIR filters using
Bilinear
transformation/Butterworth
Technique.

Scilab code Solution 12.1 IIR filter design using Bilinear Transformation
Technique

1 //Expt 12 Des ign o f IIR f i l t e r s u s i n g B i l i n e a r
t r a n s f o rma t i o n / Butte rworth Technique .

2 //To Find out B i l i n e a r Trans f o rmat i on o f HS=2/((s+1)
∗ (s+2) ∗ (s+3))

3 // O. S . Windows 1 0 ;
4 // S c i l a b 6 . 0 . 0
5 clear;

6 clc ;

7 close ;

8 s=%s;

9 z=%z;

10 HS=2/((s+1)*(s+2)*(s+3));

11 T=1;

12 HZ=horner(HS ,(2/T)*(z-1)/(z+1));

38

13 disp(HZ, ’H(z) = ’);
14

15 //H(z) =
16

17 // . . . 2 3
18 // 2 + 6 z + 6 z + 2 z
19 // −−−−−−−−−−−−−−−−−
20 // 2 3
21 // −4z − 8 z + 60 z

39

Experiment: 13

Design of IIR Filters
Chebyshev

Scilab code Solution 13.1 To Design an analog Chebyshev Filter with
Given Specifications

1 //Expt 13 To Des ign an ana l og Chebyshev F i l t e r with
Given S p e c i f i c a t i o n s

2 // O. S . Windows 1 0 ;
3 // S c i l a b 6 . 0 . 0
4 clear;

5 clc ;

6 //
7 os=2;

8 op=1;

9 ap=3; //db
10 as=16; //db
11 e1=1/ sqrt (2);

12 l1=0.1;

13 epsilon=sqrt (1/(e1^2) -1);

14 lambda=sqrt (1/(l1^2) -1);

15 N=acosh(lambda/epsilon)/acosh(os/op);

16 disp(ceil(N), ’ Order o f the f i l t e r , N = ’);
17

40

18 // Re su l t :
19 //Order o f the f i l t e r , N =
20

21 // 3 .

41

	
	Waveform generation using discrete time signals
	Z-transform and pole zero plot of a system
	Linear convolution
	Auto co-relation and cross co-relation
	Implementation of DFT and IDFT
	circular convolution using FFT
	Fast convolution using Overlap add/Overlap save method
	Realization of FIR system
	Design of FIR filter using frequency sampling method.
	Design of FIR filter using windowing technique.
	Design of IIR filter using impulse invariant technique.
	Design of IIR filters using Bilinear transformation/Butterworth Technique.
	Design of IIR Filters Chebyshev

