Scilab Manual for
Digital Signal Processing Lab
by Dr R Kumaraswamy
Electronics Engineering
Siddaganga Institute Of Technology!

Solutions provided by
Dr R Kumaraswamy
Electronics Engineering
Siddaganga Institute Of Technology

February 19, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”"Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

2

8

9

Discrete-time signals

Verification of Sampling Theorem

Impulse response of the LTI system
Frequency response of the LTI system

Linear and Circular convolution

Spectral analysis using DFT

FIR filter design

Design of Hilbert transformer using FIR filter

Design of digital differentiator using FIR filter

10 Design of IIR filter

11 Application of IIR filter

12 Design of Notch filter

13 Design of Resonator

11

14

16

18

25

30

35

38

41

46

51

54

List of Experiments

Solution 1.1
Solution 2.1
Solution 3.1

Solution 4.1
Solution 5.1
Solution 5.2

Solution 6.1
Solution 6.2

Solution 7.1
Solution 8.1

Solution 9.1

Solution 10.1
Solution 10.2
Solution 11.1
Solution 12.1

Solution 13.1

Representation of discrete time signals
To verify Sampling theorem in Time domain . . .
To determine the impulse response of a system given
a difference equation
To plot the frequency response of a Digital system
To determine linear convolution
Circular convolution in time domain and using DFT
relations
To demonstrate spectral leakage
To demonstrate effects of zeropadding and zero in-
sertion on the spectrum
Design of FIR filter using Windowing method
Design of a digital Hilbert Transformer using FIR
filter
Design of Digital Differentiator using a FIR filter
Design of digital Butterworth lowpass filter
Design of Digital Chebyshev lowpass filter

To design a digital IIR Butterworth filter to sup-
Press NOISE v v v v i e e
Suppression of noise at a given frequency using Notch
filter
Design of a Notch filter to filter noise at a given
frequency

14
16
18

20
25

27
30

35
38
41
43
46
51

o4

List of Figures

1.1
1.2

2.1

3.1

4.1
5.1

6.1
6.2

6.3

7.1
7.2

8.1
9.1

10.1
10.2

11.1
11.2

12.1

Representation of discrete time signals
Representation of discrete time signals

To verify Sampling theorem in Time domain

To determine the impulse response of a system given a differ-
ence equation oo

To plot the frequency response of a Digital system
To determine linear convolution

To demonstrate spectral leakage
To demonstrate effects of zeropadding and zero insertion on
the spectrumo L
To demonstrate effects of zeropadding and zero insertion on
the spectrumo

Design of FIR filter using Windowing method
Design of FIR filter using Windowing method

Design of a digital Hilbert Transformer using FIR filter . . .
Design of Digital Differentiator using a FIR filter

Design of digital Butterworth lowpass filter
Design of Digital Chebyshev lowpass filter

To design a digital IIR Butterworth filter to suppress noise .
To design a digital IIR Butterworth filter to suppress noise .

Suppression of noise at a given frequency using Notch filter .

10
13

15
17
20
27

29

29

33
34

37
40

43
45

49
50

93

13.1 Design of a Notch filter to filter noise at a given frequency . 55

O J O T = W N

10
11

12
13
14
15
16
17

18

Experiment: 1

Discrete-time signals

Scilab code Solution 1.1 Representation of discrete time signals
//scilab 5.5.2 [0S: Ubuntu 14.04
//Generation of signals

//Unit Sample Sequence
clear ;clc ;close ;

L = 4; //length= 2xL+1

n = -L:L; // Time index
vector

x = [zeros(1,L),1,zeros(1,L) 1;

figure (1);

subplot (421) ,plot2d3(n,x),xtitle (’Unit Sample
sequence’,’'n’,’x_1[n] ") ;

//Unit step function

//clear ;clc ;close ;

n1=0:5

x1=[ones (1,6)];

subplot (422) ,plot2d3(nl,x1),xtitle(’Unit Step
sequence ’, 'n’,’x_2[n] ")

//figure (1); plot2d3(n,x);

19
20
21
22
23

24
25
26

27
28

29
30
31
32

33
34
35

36

37
38
39
40
41
42

43

44

45

46
47

//xtitle (’Discrete Unit Step Sequence’,’n’,’x[n]’) ;

//Unit ramp function

//clear ;clec ;close ;

L = 4; // Length of the
sequence

n2= -L : L;

x2= [zeros(1,L),0:L];

,subplot (423) ,plot2d3(n2,x2),xtitle (’Unit Ramp
sequence’,’'n’,’x_2[n] ")

//plot2d3 (n,x);

//xtitle (’ Discrete Unit Ramp Sequence’,’'n’,’x[n]”)

I

//Discrete time Exponential signal
//clear ;clc ;close ;

a =0.5; //For decreasing a<l and For increasing
exponential a>1
n3 = 0:10;

x3 = (a)."n3 ;

subplot (424) ,plot2d3(n3,x3) ,xtitle(’ Exponential
Sequence’, 'n’, ’'x_3[n] ")

//plot2d3 (n,x); xtitle (" Exponentially Decreasing

) J

Signal ’,’'n’,’x[n]’);

//Sinusoidal signal

//clc;clear;

fm=100; // Frequency 100 Hz or input(’Enter the input
signal frequency:’); //100

k=3; // Number of cycles:3 or input(’Enter the number
of Cycles of input signal:’); //3

A=1; // Unit amplitude or input(’Enter the amplitude
of input signal:’); //5

tm=0:1/(fm*fm) :k/fm;

x4d=A*xcos (2*%pi*fm*tm) ;

subplot (425) ,plot2d3(tm,x4) ,xtitle(’Sinusoidal

7

48
49

50
51
52
53
o4
55
56
57

58
99
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
7
78
79
80
81

Signal’,’'n’, 'x_4[n] ")

//figure (1);plot2d3 (tm,x);

//title (" Graphical Representation of Sinusoidal
Signal 7) ;

//xlabel (’Time’) ; ylabel (" Amplitude ’) ;

/) xgrid (1)

//Square wave

//clc;clear;

t=(0:0.1:4%%pi) ’;

x6=4x*Ypi*xsquarewave (t);

subplot (426) ,plot2d3(t,x5) ,xtitle(’Square wave’, 'n’,
"x_5[n] ")

// Triangular wave
//clear;clc;

A=5// input(’enter the amplitude:’); //5
K= 2// input(’enter number of cycles:’); //2
x6 = [0:A A-1:-1:17;

x7=%x6;

for i=1:K-1

x7=[x7 x6];

end

n7=0:1length(x7)-1; // Index of the sequence

subplot (427) ,plot2d3(n7,x7);xtitle(’ Triangular wave’
, ‘time’, "amplitude ") ;

//Sawtooth wave
//cle;clear;

A=5//input (’enter the amplitude:’); //5
K=2; //input (’enter number of cycles:’); //2
x8 = [0:A];
x9=x8;
for i=1:K-1

x9=[x9 x8];
end

n9=0:1length(x9)-1;

82

83
84
85
86
87
88
89
90

91

92

93
94

Unit Sample sequence Unit Step sequence

UnitRampsequencs . Exponential | Sequence

‘‘‘‘‘ idal Signal Square wave

imwwwwmmwwwmmmwwwww WWWWWWWWWWWWWWWW“

Triangular wave Sawtooth wave

s s
Ei £
.\‘HM\.\”H“M l \“‘ \|“
e o o S e R . S . —— il e e NSO (SR (SR SR SO
o 2 4 & & 1 1 13 1 1 = o 1 2z 3 a4 s 78 s » ou @
time

Figure 1.1: Representation of discrete time signals

subplot (428) ,plot2d3(n9,x9);xtitle(’Sawtooth wave’
time’, "amplitude ’) ;

// Complex valued signals

clc;clear;

n= [-10:1:10];

a=-0.1+0.3%%i;

x=exp (a*n) ;

figure (2);

subplot (221), plot2d3(n,real(x));xtitle (’Complex
valued signal’,’n’, Real part’);

subplot (223), plot2d3(n,imag(x));xtitle(’'Imaginary’

7n7);
subplot (222), plot2d3(n,abs(x));xtitle(’Magnitude
part’,’'n’);
theta=(180/%pi)*atan(imag(x) ,real(x));

subplot (224), plot2d3(n,theta);xtitle(’Phase part’,

n’);

Y

Figure 1.2: Representation of discrete time signals

10

U W N =

10
11
12

13
14
15

Experiment: 2

Verification of Sampling
Theorem

Scilab code Solution 2.1 To verify Sampling theorem in Time domain

//scilab 5.5.2 ., OS: Ubuntu 14.04

//Sampling

clc;clear;

fm=100; //=input (’Enter the input signal frequency:’)
: //100

k=4; //input (’Enter the number of Cycles of input
signal:7); //2

A=1;//input ('Enter the amplitude of input signal:’);

//3

tm=0:1/(fm*fm) :k/fm;

x=A*xcos (2*%pi*xfm*tm) ;

figure (1) ;

subplot (411) ,plot(tm,x);

title ("ORIGINAL SIGNAL’) ;xlabel ('Time’);ylabel (’
Amplitude ’) ;

xgrid (1)

//Sampling Rate(Nyquist Rate)=2xfm

11

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53

fnyq=2*fm;

// UNDER SAMPLING

fs=(3/4) *xfnyq;
n=0:1/fs:k/fm;

xn=A*xcos (2x)pixfm*n) ;
//figure (2) ;

subplot (412) ,plot2d3(’gnn’,n,xn);
plot(n,xn, 'vr7);
title(’Under Sampling’);
xlabel ("Time’) ;
ylabel (" Amplitude ') ;
legend (’Sampled Signal’, ’Reconstructed Signal’);
xgrid (1)

//NYQUIST SAMPLING
fs=fnyq;

n=0:1/fs:k/fm;

xn=Axcos (2*%pi*xfm*n) ;

// figure (3) ;

subplot (413),
plot2d3(’gnn’,n,xn);
plot(n,xn, 'r7);
title(’Nyquist Sampling ') ;
xlabel ('Time’) ;
ylabel (" Amplitude) ;
legend ("Sampled Signal’, “Reconstructed Signal’);
xgrid (1)

//OVER SAMPLING
fs=fnyq*10;

n=0:1/fs:k/fm;

xn=Axcos (2xpixfm*n) ;
//figure (4)

subplot (414)
plot2d3(’gnn’,n,xn);
plot(n,xn, 'vr7);
title(’Over Sampling’);
xlabel ('Time’) ;
ylabel (" Amplitude ') ;

12

54
55
56
o7

Figure 2.1: To verify Sampling theorem in Time domain

legend ("Sampled Signal’,
xgrid (1)

// Result

// Observing plots

"Reconstructed Signal’);

13

© 00

10

11

Experiment: 3

Impulse response of the LTI
system

Scilab code Solution 3.1 To determine the impulse response of a system
given a difference equation

//scilab 5.5.2 ., OS: Ubuntu 14.04

//To determine the impulse response of a LTI system,
given the difference equation y[n|]=b2 x(n—2)+bl
x(n—1)+ bOx(n) +a(l)y(n—1)

clear all;clc;close;

b=input (’Enter the coefficients of input x[n]= ");//
1)

a=input ('Enter the coefficients of output y[n]= 7);
//[1 —1 0.9]

x=[1 zeros(1,9)];//generate impulse sequence of
length 10

n=0:9;

h=filter(b,a,x);

figure; plot2d3(m,h),

xtitle (’Impulse response h[n]’, Time index n’, ’h[n]
7’7 7);

//Example: y[n]—y[n—1]4+0.9y [n—2]=x[n];a=[1] b=[1 —1
0.9]

14

Figure 3.1: To determine the impulse response of a system given a difference
equation

12 //n determines the length of the impulse response
required

13 //Result:10 samples of h[n
]=[1,1,0.1,-0.8,-0.89,-0.17,0.631,0.784,
0.2161,0.4895]

15

10
11
12
13
14

Experiment: 4

Frequency response of the LTI
system

Scilab code Solution 4.1 To plot the frequency response of a Digital sys-
tem

//scilab 5.5.2 ., OS: Ubuntu 14.04
//To determine the frequency response of a discrete—
time system from its difference equation

//Design steps: Given a0 y[n] = —a2 y[n—-2] — al y[n
—1] + b0 x[n] + bl x[n—1] + b2 x[n—2]
//1. System function H(z) = b0 + bl =z —1 + b2 z

-2/ 14+ al z —1 + a2 =z —2
//2. Put z= e (jw) to get the frequency response
//Design example: Plot the magnitude and phase
response of the system represented by

//6y[n]+5y [n—1]+y[n—2]= 18x[n] + 8x[n—1]

clear;clc;

close;

b=input ('Enter the coefficients of x[n]
a=input ("Enter the coefficients of y[n]

16

15
16
17
18

19
20
21
22
23
24
25

26
27
28
29

Phase Response

Phase.

Figure 4.1: To plot the frequency response of a Digital system

//b:[18, 8]§

//a=[6 5 1];

m= 0: length(b)-1; p=0:1length(a)-1;

w=-2*%pi:%pi/100:2*%pi;//Plot over a interval of 4pi
to observe periodicity

num = bx* exp(-%i*m’*w);

den = axexp(-%i*p’*w);

H= num./den;

magH = abs(H); angH= atan(imag(H),real (H));

figure;

subplot (211), plot(w, magH);

xtitle ("Magnitude response’, Frequency in rad’,
Magnitude) ;

subplot (212) ,plot(w, angH);

xtitle ("Phase Response’, Frequency in rad’, "Phase’);

//Expected result

//H =[5,3.5802695 — 1.3881467i,2.6 — i,2.253303 —
0.47853411,2.1666667,2.253303 + 0.47853411 ,2.6 +
1,3.5802695 + 1.38814671,5]

)

17

O U W N

10
11
12
13
14
15
16
17
18
19

Experiment: 5

Linear and Circular convolution

Scilab code Solution 5.1 To determine linear convolution

//scilab 5.5.2 | OS: Ubuntu 14.04
// Linear Convolution in time and frequency domain

clc ;clear all;close ;

x=[1 2 3 4];//input (’enter the input sequence

values x(n)= "); // 11 2 3 4]

h=[1 -1 0 -1];//input(’enter the impulse sequence
values h(n) = 7);..// [1 -1 0 —1]

L1 = length(x);

L2 = length(h);

//Method 1 Using Direct Convolution Sum Formula
for i = 1: L1 +L2 -1

conv_sum = O0;

for j = 1: 1

if ((Ci -3 +1) <= 12) &(j <= 11))

conv_sum = conv_sum + x (j) * h (i -j +1) ;
end ;
y(i) = conv_sum ;

18

20
21
22
23

24
25
26
27

28
29
30

31
32
33
34
35

36
37

38

39

40

41

42

43

44

45

46
47

end ;
end ;

disp(y,’ Convolution Sum using Direct Formula Method

=)

//Method 2 Using In built Function

f = convol(x,h)

disp(f, ’7 Convolution Sum Result using Inbuilt
Function = 7)

//Method 3 Using frequency Domain multiplication

N = L1 +L2 -1; //
Linear convolution output length

x = [x zeros(1l ,N - L1) 1;

h=[h zeros(1 ,N - L2) 1;

f1 = fft(x)
f2 = fft(h)
f3 = f1.*x f2 ; //

Multiplication in frequency domain

f4 = ifft (£3)

disp (f4 , ’'Convolution Sum Result DFT and IDFT
method = 7)

//To plot input, impulse and output signals.
subplot (5,1,1) ;plot2d3(x);xtitle(’Input signal x ’

,'n’,’x[n])

subplot(5,1,2) ;plot2d3(h);xtitle(’Impulse signal h’
0, hn])

subplot (5,1,3) ;plot2d3(y);xtitle(’Liner Convolution
using formula’,’n’,’yl[n]|’);

subplot(5,1,4) ;plot2d3(f);xtitle(’Linear
Convolution using Inbuilt function’,’'n’,’y2[n]’);

subplot (5,1,5) ;plot2d3(f);xtitle(’Linear
Convolution using DFT method’, 'n’,’y3[n]’);

// Expected result
/1. 1. 1. 0. — 6. — 3. — 4

19

)
1) - v d
R L2 o o
"ol T} Tt

1 12 14 16 18 2 22 24 26 28 3 32 34 35 38 4 42 44 45 4B 5 52 54 56 58 6 62 64 66 68 7

1 12 14 16 18 2 22 24 26 28 3 32 34 35 38 4 42 44 45 4B 5 52 54 56 58 & €2 €4 66 €8 7

%] EE X3
v:1 a1 v Liner Comvolution using formula —
m| O o

T T T T T T T T
1 12 14 16 18 2 22 24 26 28 3 32 34 35 38 4 42 44 465 4B 5 52 54 56 58 6 62 €4 66 68 7

Linear Conuolution using Inbuilt function

1 12 14 16 18 2 22 24 26 28 3 32 34 35 38 4 42 44 46 4B 5 52 54 56 58 6 62 €4 66 68 7

- 22 = Linear Canvlution using DFT method
i1
o

T T T T T T T T T
1 12 14 16 18 2 22 24 26 28 3 32 33 36 38 4 42 44 46 4B 5 52 54 56 58 6 62 €4 66 €8 7

Figure 5.1: To determine linear convolution

Scilab code Solution 5.2 Circular convolution in time domain and using
DFT relations

//scilab 5.5.2 | OS: Ubuntu 14.04

// Circular convolution of given discrete sequences
in time domain (Matrix method)

clear;clc;

x1=input (’enter the first sequence values x1(n)= 7)
; [/ 11 23 4]

x2=input ("enter the second sequence values x2(n) =
s //11 10]

L1 = length(x1); //length of
first sequence

L2 = length(x2); //length of
second sequence

bl

20

10

11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

length of x1 and x2 are Equal

if (L1 >L2)
for i1 = L2+1
x2(1i) = 0;
end

elseif (L2>L1)

for i = L1+1:

x1(i) = 0;
end
end

N = length(x1);
x3 = zeros(1,N)

Circular convolution

a(1l) = x2(1);

for j = 2:N
a(j) = x2(N-j

end

for i =1:N

x3(1) = x3(1)+x1(i)*a(i);

end
X(1,:)=a;

// Calculation of circular

for k = 2:N
for j =2:N
x2(j) =
end

x2 (1)
X(k,:)=
for i = 1:N
a(i) =
x3(k) =
end
end

;L1

L2

3

+2) ;

a(j-1);

a(N);
X2 ;

x2(1);

x3(k)+x1(i)*a(i);

convolution

//To make

//x3

disp(X, ’Circular Convolution Matrix x2[n]=")
disp(x3,’Circular Convolution Result x3[n] =)

// Expected res

ult

46
47
48
49
50
51
52
53
o4
55
56
57

58
99

60

61

62
63
64

65
66
67
68
69
70
71
72

73
74
75

76

// Circular Convolution Matrix x2[n]=

// 1.
/] — 1.
// 0. —
/] — 1.

1.
0.
1
1

O = =

//Circular Convolution Result x3[n]| =
/] —5. —2. -3. 0.

// Circular Convolution in frequency domain (DFT—
IDFT method)

clear all;clc;close;

x1=input (’enter the first sequence values x1(n)= ’)
/) 123 4

x2=input (enter the second sequence values x2(n) =
s /01 10 1]

L=input (’enter the length of the sequence values L=

Y

D /)4
//Computing DFT
X1 = fft(x1l,-1); //—1 for direct
FFT

X2 = fft(x2,-1);
disp (X1, 'DFT of x1[n] is Xl(k)=")
disp (X2, 'DFT of x2[n] is X2(k)=")

//Multiplication of 2 DFTs

X3 = X1.%xX2;

disp (X3, 'DFT of x3[n] is X3(k)=")

x3 =(fft(X3,1)) //
Circular Convolution Result ;1 for IFFT

disp(x3, 'Circular Convolution x3[n]=")

//// Expected result

//DFT of x1[n] is X1(k)= 10, — 2.+ 2.i — 2.

— 2. — 2.1

22

77 //DFT of x1[n] is X2(k)= — 1. 1. 3. 1.
78

79 // DFT of x3[n] is X3(k)= — 10. — 2. + 2.1 —
6. — 2. — 2.1

80

81 //Circular Convolution x3[n]= —5. —2.
—3. 0.

82

83 ////Performing Linear Convolution using Circular
Convolution

84 clear;clc;

85 x=input (’enter the input sequence values x(n)= 7);
/) (123 4]

86 h=input (’enter the impulse sequence values h(n) = 7)
/1 10 1)

87 N1 = length(x); //Length of input signal

88 N2 = length(h); //Length of impulse response

89

90 N = N1+N2-1 // Length of

output response

91 disp(N, 'Length of Output Response y(n)’)

92

93 //Padding zeros to Make Length of 'h’ and ’'x’ equal
to length of output response 'y’

94

95 hil1 = [h,zeros(1,N-N2)1];

96 x1 = [x,zeros(1,N-N1)];

97
98 H = fft(hl,-1);
99 X = fft(xl,-1);

100 //Multiplication of 2 DFTs

101 Y = X.x*xH

102 y =(£f£ft(Y,1)) //Linear Convolution Result
103

104 disp (X, DFT of i/p X(k)=")

105 disp(H, 'DFT of impulse sequence H(k)=")

106 disp (Y, 'DFT of Linear Filter o/p Y(k)=")

107 disp(y, 'Linear Convolution result y[n]=")

23

108
109
110
111
112

113

114

115

//Expected output
//Length of Output Response y(n)

//DFT of i/p X(k)=

10.

— 2.0244587 —

7.

0.3460107 + 2.4791213 1

0.1784479 +

0.3460107 — 2.47912131

6.22398171
0.1784479 — 2.4219847i |
2.42198471

2.0244587 + 6.22398171

//DFT of impulse sequence H(k)=
1.2774791 + 1.2157152i
0.19309641
2.1234898 — 1.40881171 ;

1.2774791 — 1.21571521

0.1930964

i

Y

Y

0.5990311 +

— 1.

2.1234898 + 1.40881171

0.5990311 —

//DFT of Linear Filter o/p Y(k)=
4.9803857 — 10.4121711
3.7910526 — 4.89166021

1.55188431

3.7910526

1.5518843 1

Y

+ 4.89166021

)

4.9803857

— 0.2714383 +

— 0.2714383 —

+

//Linear Convolution result y[n]=
—4.

1.

0.

—0.

—3.

— 10.

10.4121711
1.

9

?

Y

Y

Y

)

24

© 00 J O U i W N

—_ =
)

—_
[\]

13

14
15

16
17

Experiment: 6

Spectral analysis using DFT

Scilab code Solution 6.1 To demonstrate spectral leakage

//scilab 5.5.2 | OS: Ubuntu 14.04

// Spectral Leakage

//Check the result for the following cases
//case (1): fm=10;fs=125;m=1;m=number of cycles
//case (2): fm=10;fs=125;m=2;

//case(3): fm=200;fs=10000;m=2.5;

//case (4): fm=T75;fs =250;m=3;

clc;clear;close;

//fm=input (’Enter the frequency of the input signal

") ;//message frequency in Hz
//fs=input (’Enter the sampling frequency ’);//
sampling frequency in Hz

//m=input ("Enter the number of cycles of the input

signal ") ;// Number of cycles
//Case2:No spectral leakage

fm=10;fs=125;m=2; //Oversampling and integer number

of cycles
t=0.0001:1/fs:m/fm;
x=3%cos (2*)pi*fm*t) ; //signal

25

18

19
20
21
22

23
24
25
26
27

28

29
30
31

32
33
34
35

36
37
38
39
40

N=(m*xfs/fm) ; //should be non—
integer to obtain spectral leakage
for k=1:N
X1(k)=0;
for n=1:length(x)
X1 (k)=X1(k)+x(n) .*xexp((-%1i) .*2.*x%pi.*(n-1) .*x(k-1)
NG
end
end
k=0:N-1
f=k*xfs/N; //frequency axis in Hz
figure (1) ,subplot (221) ,plot2d3(t,x),xlabel(’time’),
ylabel(’x(n)’),title(’No leakage: m=2, f=10 and
Fs=125 Hz’) ,subplot (223) ,plot2d3(f,abs(X1)),
xlabel (’freq in Hz’),ylabel(’Mag’);//Case 3:
Spectral leakage
fm=10;fs=125;m=2.5; //Oversampling and integer
number of cycles
t=0.0001:1/fs:m/fm;

x=3*cos (2*pi*xfm*t) ; //signal

N=(mxfs/fm); //should be non—
integer to obtain spectral leakage

for k=1:N

X1(k)=0;

for n=1:length(x)
X1 (k)=X1(k)+x(n) .*xexp((-%1i) .*2.x%pi.*(n-1) .*x(k-1)
N
end
end
k=0:N-1
f=kxfs/N; //frequency axis in Hz
figure (1) ,subplot (222) ,plot2d3(t,x),xlabel(’time’),
ylabel(’x(n)’),title(’Spectral leakage: m=2.5, f
=10 and Fs=125 Hz'’),subplot (224) ,plot2d3(f,abs (X1
)) ,xlabel (' freq in Hz’),ylabel (’Mag’)

26

(@] QL = W N =

© 00

10
11
12

Spectral laakage: m=:

Fe=125 Kz

H ‘ '
T T T 1
012 014 016 018 02 022 024 026
time

T T T T T T T T T =
2 3 4 S0 & 70 80 % 100 110 120 20 3 40 s e 70 s s 10 1o 1o
fragqin bz Freqin Hz

Figure 6.1: To demonstrate spectral leakage

Scilab code Solution 6.2 To demonstrate effects of zeropadding and zero
insertion on the spectrum

//scilab 5.5.2 | OS: Ubuntu 14.04

// Effect of zero padding and interpolation

/] Effect of Zero padding

clc;clear;close;

x= input (’enter the input sequence values x(n)= ");
/11 2 3 4]

k= input (’enter the number of zeros to be padded= ’

); //1020 (For 1024 point DFT))
N=length(x);
x_pad=[x zeros(1l,k)];
Ni=length(x_pad);
f=0:N-1;
f1=0:N1-1;
X=abs (fft (x));

27

13
14
15

16

17

18

19

20
21
22
23
24
25
26
27
28
29
30
31

32

X_pad= abs(fft(x_pad));

figure (1) ;

subplot (221) ,plot2d3(x),title(’ Original sequence’),
subplot (223) ,plot2d3 (f,X), title(’Spectrum of
Original sequence’);

subplot (222) ,plot2d3(x_pad),title(’Zero—padded
sequence ') ,subplot (224), plot2d3 (f1,X_pad),title
(’Spectrum of Zero—padded sequence’)

//// Effect of inserting zeros in between samples (
Interpolation)

x= input (’enter the input sequence values x(n)= 7);

/11 2 3 4]
k= input (’enter the number of zeros to be inserted=
)5 //2 (Vary and observe effect of zero

interpolation)

x_mod=1[];

N=length (x);

//

for i= 1: N

x_mod=[x_mod, x(i), zeros(1,k)];

end

Ni=length(x_mod) ;

f=0:N-1;

f1=0:N1-1;

X=abs (fft(x));

X_mod= abs(fft(x_mod)) ;

figure (2);subplot (221) ,plot2d3(x),title(’ Original
sequence ') ,subplot (223) ,plot2d3 (f,X), title(’
Spectrum of Original sequence’);

subplot (222) ,plot2d3(x_mod) ,title(' Zero—interpolated
sequence ') ,subplot (224), plot2d3 (f1,X_mod),
title (’Spectrum of Zero—inserted sequence’)

28

Original zequence

x4
4
35
3]
v3
ER 0
25
*2]
v2
2 =}

Spectrum of Original sequence.

X3
v2 828
=

Figure 6.2: To demonstrate effects of zeropadding and zero insertion on the

spectrum

Original zequence

xlnl

Spactrum of Original sequence.

xIkI

X3
v:2.828]
T

Figure 6.3: To demonstrate effects of zeropadding and zero insertion on the

spectrum

xmodln]

Zero-padded saquence

Spectrum of Zero-padded sequence

700 800

Zero-interpolated saquence

E&l
v3
o

00

X_medlk]

%11
v:2.828)
il

1000 1100 1200

29

K

=W N =

10
11
12

13
14

Experiment: 7

FIR filter design

Scilab code Solution 7.1 Design of FIR filter using Windowing method

//scilab 5.5.2 | OS: Ubuntu 14.04

//Design of FIR filters using windowing

// Design a digital FIR low pass filter with
following specifications.

//a) Pass band cut—off frequency T Wp=
,,,,,,,,,, radians

//b) Pass band ripple STp=__ dB

//c¢) Stop band cut—off frequency DW=
,,,,,,,,,, radians

//d) Stop band attenuation STrS=
,,,,,,,,,, dB

//Choose an appropriate window function and
determine impulse response and provide a plot of
frequency response of the designed filter.

//Design example:

//Design a digital FIR low pass filter with
following specifications.

//a) Pass band cut—off frequency 0.3 rad

//b) Pass band ripple :0.25 dB

30

15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49

//c¢) Stop band cut—off frequency :0.45 rad
//d) Stop band attenuation : 50 dB
clc;
clear;
close;
wp=input ("enter the pass band edge in rad’);
ws=input ('enter the stop band edge in rad’);
rs=input (’enter the stop band ripple in dB’);
freq_points=1024;
freq_divs=(freq_points/2) -1;
k=4; //Hamming window (decided based on stop band
attenuation)
trw=ws-wp,;
N=(k*2*x%pi/trw);
N=ceil (N);
remainder=N-fix (N./2) .*2
if remainder==
N=N+1;
end

WC=Wp;
aph=(N-1)/2;
for n=0:N-1
if n==aph
hdn_minusalph(n+1)=wc/%pi;

else
hdn_minusalph(n+1)= sin(wc.*(n-aph)) ./ (lpi.*(n-
aph));

end

end

n=0:N-1,;
wndw=window ('"hm’,N) ;

hn=hdn_minusalph.*wndw’;
figure (1) ;subplot (311);plot2d3(n,wndw);xlabel(’'n’);
ylabel ('wndw ') ;title (’'Hamming Window function ’);

31

50

o1

52
53

o4
55
56
57
58
99
60
61

62
63
64
65
66
67
68
69

70
71
72
73
74
75

76
7
78
79

subplot (312);
ylabel ("hdn_minusalph ’);title (' Impulse response
of IIR filter ’);

subplot (313);

;title ("Impulse

//omega=0:%pi/freq_divs: %pi;
h=[hn’ zeros(l,freq_points-length(hn))]l;;//For a
1024 point DFT

H=fft (h) ;

H_mag=20%*1logl0(abs (H));
H_ang=atan(imag(H) ,real (H));
H_phase=unwrap (H_ang) ;
w=(0:freq_divs)./(freq_points);

wl=w*x%pi;

plot2d3(n,hdn_minusalph);xlabel(’'n’);

plot2d3(n,hn);xlabel(’'n’);ylabel(’hn’)
response of FIR filter ’);

figure (2);subplot (211) ,plot2d(wl,H_mag(1:512));
xtitle ("Magnitude response’,’w (rad)’, Magnitude (dB)

7);

subplot (212) ,plot2d(wl,H_phase(1:512));
xtitle (’Phase Response’,’w (rad)’, Phase (rad)’);

//Problems:

//1. Design a digital FIR low pass

following

//a) Pass
//b) Pass
//¢) Stop
//d) Stop

band
band
band
band

specifications .

cut—off frequency
ripple

cut—off frequency
attenuation

//2. Design a digital FIR low pass

following

//a) Pass
//b) Pass
//¢) Stop
//d) Stop

band
band
band
band

specifications .

cut—off frequency
ripple

cut—off frequency
attenuation

filter

:0.

0.

4

6

filter

:0.

:0.

25

3

with

rad
:0.25 dB

rad
44 dB

with

rad
:0.25 dB
rad
50 dB

32

Figure 7.1: Design of FIR filter using Windowing method

33

Figure 7.2: Design of FIR filter using Windowing method

34

S Ot

© 00

10

12

13

Experiment: 8

Design of Hilbert transformer
using FIR filter

Scilab code Solution 8.1 Design of a digital Hilbert Transformer using
FIR filter

//scilab 5.5.2 ., OS: Ubuntu 14.04

//Design a differentiator using a Hamming window of
length N=21. Plot the time and frequency domain
responses .

//Design a length —25 digital Hilbert transformer
using a Hann window.

//Design of Hilbert transformer

//The ideal frequency response of a linear phase
Hilbert transformer is given by

//Hd(e jw) = —joe(—j w) 0 < w < pi

// je(—=j w), —pi<w<0

//The ideal impulse response is given by
//hd(n—)= 2/pi (sin2 pi(n)/2) / (n
) n

// 0, n=

35

14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

//Scilab Program
//Inputs: Window length and type of window
clc;clear;close;

N = 41;//input (" enter the window length”); //55
freq_points=1024;
windowfn =window (’hm’,N);// Hamming window ()Window
type can be changed here)

m = 0:N-1;
aph = (N-1)/2;
for n=0:N-1

if n==aph

hd (n+1)=0;

else
hd (n+1)=(2/%pi) *((sin ((%pi/2) *(n-aph))."2) ./(n-
aph));

end

end

n=0:
hn

_1’
hd . *windowfn ’;

=

omega=-%pi:2*%pi/(freq_points-1) :%pi;

z=%hz;

denl=real(z"(N-1));
num=0;

for n=0:N-1

num=num+ (hn(n+1) .z~ (N-n-1));

end

numl=real (num) ;
Hz=numl./denl;
w=exp (%i*omega) ;
rep=freq(Hz ("num”) ,Hz("den”) ,w) ;
magH=abs (rep) ;

36

50

51
52
53
54

Figure 8.1: Design of a digital Hilbert Transformer using FIR filter

figure;subplot (211) ,plot2d3(m,hn) ,xtitle (' Impulse
response’,’'n’ "h[n] ")

, subplot (212) ,plot2d(omega ,magh) ;

xtitle (’Magnitude response’,’w (rad)’,’ Magnitude’) ;

//Expected result

//Magnitude response graph

37

10
11
12

Experiment: 9

Design of digital differentiator
using FIR filter

Scilab code Solution 9.1 Design of Digital Differentiator using a FIR fil-
ter

11//scilab 5.5.2 | OS: Ubuntu 14.04

//Design a differentiator using a Hamming window of
length N=21. Plot the time and frequency domain
response

//Inputs: Window length and Type of window

//The frequency response of a linear —phase ideal
differentiator is given by

//Hd(e jw) =] , 0< <

// —jw — < <0

//The ideal impulse response of a digital
differentiator shifted by with linear phase is
given by

//hd(n) = cos (n) / (n—). n

// 0, n=

//Scilab Program:

38

13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47

clc;clear;close;

N = 41;// input(”enter the window length”);

freq_points=1024;

windowfn =window(’hm’,N);//Hamming wuindow (Try with

different windows)
m = 0:N-1;
aph = (N-1)/2;
for n=0:N-1
if n==aph
hd (n+1)=0;

else
hd(n+1)= cos(%pi*(n-aph))./(n-aph);

end

end

n=0:N-1,;

hn = hd.*windowfn’;

omega=-%pi:2*%pi/(freq_points-1) :%pi;

z=%hz;

denl=real(z"(N-1));

num=0;

for n=0:N-1
num=num+(hn(n+1) .z~ (N-n-1));

end

numl=real (num) ;

Hz=numl./denli;

w=exp (%i*omega) ;

rep=freq(Hz ("num”) ,Hz("den”) ,w) ;

magH=abs (rep) ;

figure;subplot (211) ,plot2d3(m,hn) ,xtitle (' Impulse
response ', ’'n’, ’h[n]’),subplot (212) ,plot2d (omega,

magH) ;

xtitle (’Magnitude response’,’w (rad)’, Magnitude’) ;

//Expected result
//Magnitude response graph

39

x1 2 |[Txa | [xe > = e Saas | X3 x40
R N A s
et
L

Figure 9.1: Design of Digital Differentiator using a FIR filter

40

© 00 J O U

10

12
13

14

15

16
17

Experiment: 10

Design of IIR filter

Scilab code Solution 10.1 Design of digital Butterworth lowpass filter

//scilab 5.5.2 | OS: Ubuntu 14.04

//Program To Design the Digtial Butterworth IIR
Filter

//Design a digital IIR low pass filter with
following specifications.

//a) Pass band cut—off frequency :1000 Hz

//b) Pass band ripple :—1 dB
//c¢) Stop band cut—off frequency :3000 Hz

//d) Stop band attenuation : —15 dB

//Sampling frequency: 15000 Hz

clear all;clc;close;

f1=1000; //input (’Enter the pass band edge(Hz)= ’);

£2=3000; //input (’Enter the stop band edge(Hz)= ");

ki=-1;//input (’Enter the pass band attenuation (dB)=
7)’

k2=-15; //input (’Enter the stop band attenuation (dB)=

)

fs=10000; //input ('Enter the sampling rate(Hz)= 7);

// Digital filter specifications (rad)

41

18
19
20
21
22
23
24
25
26

27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46

wl=2x*%pixfi1*x1/fs;
w2=2x*Ypi*xf2*x1/fs;

//Pre warping
ol=2xfsxtan(wl/2)
02=2xfsxtan(w2/2)

//Design of analog filter

n=1ogl10(((10.7(-k1/10))-1)/((10.7(-k2/10))-1)) ./ (2%
log10(o1/02));

n=round (n) ;

wn= 02./((10.7(-k2/10) -1) .~ (1/(2%*n)));

//[h,poles ,zeros ,gain]=analpf(n, butt’ [0 0],wn)hb.
dt = ¢’
//[fr ,hr]=repfreq (hb, fmin , fmax)

h=buttmag(n,wn,1:2*%pixfs);
mag=20*1og10(h) ’;

//Converting analog to digital filter
hz=iir(n, 'lp’, "butt’,0.25,[])
//gxpoly(z, z") /poly(p,’z")

(hzm, fr]l=frmag (hz,256) ;
magz=20*1ogl10 (hzm) ’;

subplot (2,1,1) ,plot2d ((1:2*x%pi*fs)’,mag),xtitle(’
Analog IIR filter: lowpass’, Analog frequency in
rads/sec’, ’dB’,’ ’);subplot(2,1,2),plot2d(fr,
magz);xtitle(’Digital IIR filter: lowpass 0 < fr
< 0.5, frequency’, 'dB’,’ 7);

//note: Use zoom/axis commands to verify the design.

42

I R

© 00 J & Ot

10

12
13
14

\\\\\\
oooooooooooooooooooooooooooooo

fffffff

Figure 10.1: Design of digital Butterworth lowpass filter

Scilab code Solution 10.2 Design of Digital Chebyshev lowpass filter

//scilab 5.5.2 ., OS: Ubuntu 14.04

//Program To Design the Digtial Chebyshev IIR Filter

////Design example:

//Design a digital IIR low pass filter with
following specifications.

//a) Pass band cut—off frequency :1000 Hz

//b) Pass band ripple :—1 dB
//c¢) Stop band cut—off frequency :3000 rad
//d) Stop band attenuation : —15 dB

//Sampling frequency: 15000 Hz

clear all;clc;close;

£1=1000; //input ("Enter the pass band edge(Hz)
£2=3000; //input (’Enter the stop band edge(Hz)
rp=-1;//input (’Enter the pass band ripple(dB)= 7);

~— —

43

15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

39
40
41
42
43
44
45
46
47
48

rs=-15; //input ('Enter the stop band attenuation (dB)=
)

fs=10000; //input ('Enter the sampling rate(Hz)= 7);

//Digital filter specifications (rad)

wl=2x*Ypixf1*x1/fs

w2=2*Ypi*xf2*x1/fs

//Pre warping

ol1=2xfs*xtan(wl/2)

02=2xfs*xtan(w2/2)

or=02/o01;//Stop—band edge of normalized lowpass
filter

A2 =10."(-rs/10);

A=sqrt (A2);

epsilon2 = (10."(-rp/10)-1);

epsilon=sqrt(epsilon2)

g=((A2-1) ."0.5./epsilon)

N = (acosh(g))/(acosh(or))

N = ceil (N)

oc=o01;

//[pols ,gn] = zpchl (N, epsilon ,o0l)

Y

//Hs = poly(gn,’s’, coeff ’)/real (poly(pols,’s’))

h=cheblmag(N,oc,epsilon,1:2%%pix*fs);

mag=20*x1ogl0(h) ’;

//plot2d ((1:1000) *,mag,[2],7011” ,” 7 [ymax,ymin,fmax
, fmin |)

// gain=20xlogl0 (abs(h_s)); %Verify the specification

[k1,k2] at prewarped frequencies

//subplot (211);

//plot (omega, gain) ;

//xlabel (frequency in rad/ sec);

//Converting analog to digital filter

fc=wl/(2*%pi);

deltal=(1-(1./A2));

//1—ripple in passband

hz=iir (N, 'lp’, ’chebl ’,[fc],[deltal 0]);

//for chebl filters l-delta(l)<ripple<l in passband

//gxpoly(z,’z") /poly(p, z")

44

Figure 10.2: Design of Digital Chebyshev lowpass filter

49 [hzm,fr]l=frmag(hz,256) ;

50 magz=20*1ogl0 (hzm) ’;

51 figure (1) ;subplot(2,1,1),plot2d ((1:2x%pix*xfs)’,mag),
xtitle (" Analog IIR filter: lowpass’, Analog

frequency in rads/sec’, 'dB’,’ ’);subplot(2,1,2),
plot2d (fr,magz);xtitle(’Digital IIR filter:
lowpass 0 < fr < 0.57, frequency’, 'dB’,’ 7);

45

[\

© 00 N O Ot = W

10

12
13
14
15
16
17
18
19

Experiment: 11

Application of IIR filter

Scilab code Solution 11.1 To design a digital IIR Butterworth filter to

suppress noise

//scilab 5.5.2 |

// This program will

clear all;clc;close;

fi=input ("Enter
f2=input ("Enter
ki=input ("Enter
k2=input ("Enter
fs=input ('Enter

signal_fo=1000;
noise_£f0=4000;

//Digital filter

OS: Ubuntu 14.04
suppress noise at f=4000 Hz
using Butterworth prototype
//pass band edge=f1=1500Hz
//stop band edge=f2=2000 Hz
//sampling rate =Fs=10000 Hz = 1/Ts
//passband attenuation = —1db
//stop attenuation

the
the
the
the
the

= -3 db

pass band edge(Hz)= ’);
stop band edge (Hz)= ’);
pass band attenuation (dB)
stop band attenuation (dB)
sampling rate (Hz)= ’);

specifications (rad)

46

7);
7),

20
21
22
23
24
25
26
27
28

29
30
31
32

33
34
35
36
37
38

39
40
41
42
43
44
45
46
47

48
49

50

wl=2x*%pixfi1*x1/fs;
w2=2x*Ypi*xf2*x1/fs;

//Pre warping
ol=2xfsxtan(wl/2)
02=2xfsxtan(w2/2)

//Design of analog filter

n=1ogl10(((10.7(-k1/10))-1)/((10.7(-k2/10))-1)) ./ (2%
log10(o1/02));

n=round (n) ;

wn= 02./((10.7(-k2/10) -1) .~ (1/(2%*n)));

//[h,poles ,zeros ,gain]=analpf(n, butt’ [0 0],wn)hb.
dt = ¢’
//[fr ,hr]=repfreq (hb, fmin , fmax)

h=buttmag(n,wn,1:2*%pixfs);

mag=20*x1ogl0(h) ’;

//plot2d ((1:2% %pixfs)’ ,mag)

//xtitle (?Analog IIR filter: lowpass’,’ Analog
frequency in rads/sec’, dB’,’ 7);

//Converting analog to digital filter
hz=iir(n, ’lp’, "butt’,0.25,[])
//gxpoly(z,’z") /poly(p,’z")

[hzm,fr]=frmag (hz,256) ;
magz=20%*10og10 (hzm) ’;

fri=fr*xfs;
//figure;plot2d (fr1’ ,magz’);xtitle (' Digital IIR
filter: lowpass 0 < fr < 0.57, frequency ’, 'dB’)’
)

//////note: Use zoom/axis commands to verify the
design .

//These coefficients are to be read from variable hz

(line 41, output of iir function)

47

o1
52
53
54

55
56
o7
58

59
60
61
62
63
64
65
66
67
68

69

70

71
72
73
74

75
76
7
78
79
80
81
82

num=[0.2928 0.5858 0.2928];
den=[1 0 0.1716];// In negative powers of z

//Signal generation (sine wave of frequency 1000 Hz)
of length 1 second

t=0:1/fs:10/signal_fo;//10 cycles of input

original_signal=sin(2*%pi*signal_fox*t);

//Noise generation (sine wave of frequency 4000 Hz)
of length 1 second

t=0:1/fs:10/signal_fo;

noise=sin(2x%pi*noise_foxt);

noisy_signal=original_signal+noise;
filter_output=filter (num,den,noisy_signal);
//Plot original ; noisy and filtered outputs

figure;subplot(3,1,1), plot2d(t,original_signal),
xtitle(’Original_signal ’,’t 7, 'x(t) "),

subplot (3,1,2), plot2d(t,noisy_signal) ,xtitle(’
Noisy_signal ’, 't ", 'n(t) "),

subplot (3,1,3), plot2d(t,filter_output) ,xtitle(’
Filtered_signal’,’t’, y(t));

li=length(original_signal);

12=1ength(noisy_signal);

N=512;

x=[original_signal zeros(1,N-11)];//To make it of
length 512

n=[noisy_signal zeros(1,N-11)];

y=[filter_output zeros(1,N-11)];

X=fft(x);

N=fft(n);

Y=fft (y);

f=(0:511) xfs;

figure;

subplot (3,1,1), plot2d(f,abs(X)),xtitle(’

48

M

AVAVAVAVAVAVAVAVAVAY

Figure 11.1: To design a digital ITR Butterworth filter to suppress noise

Original_signal’,'F’,'X(f) "),

83 subplot(3,1,2), plot2d(f,abs(N)),xtitle(’
Noisy_signal ’, 'F’,’N(f) "),

84 subplot(3,1,3), plot2d(f,abs(Y)),xtitle(’
Filtered_signal ’,'F’,’Y(f)");

49

Figure 11.2: To design a digital ITR Butterworth filter to suppress noise

50

=W N =

© 00 N O

10

11

12
13

Experiment: 12

Design of Notch filter

Scilab code Solution 12.1 Suppression of noise at a given frequency using
Notch filter

//scilab 5.5.2 | OS: Ubuntu 14.04

//Program To Design a simple notch filter and verify

// Design a simple notch filter to stop a
disturbance with frequency F_0=3.5 kHz and a
sampling frequency F_s=8 kHz.

//Also, verify the notch filter operation by adding
a sinewave of F_0 Hz to a speech signal, filter
and verify .

//Scilab Program:
clc;clear;close;
£=3500; //input (” Enter the frequency in Hz”);
//3500
£s=8000; //input (" Enter the sampling rate”);
//8000
r=0.98; //input (” Enter the radius of the pole in the
z—plane”); //0.98
w=2*Ypi*xf/fs;
zl=exp (hi*w) ;

51

14
15
16
17
18
19
20
21
22
23

24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39

z2=exp (-%hixw);

pl=r*xexp (hixw) ;

p2=r*xexp (-%hix*w) ;

z=%z;

numl=(real ((z-z1)*(z-22)))

deni=(real (((z-pl)*(z-p2))))

Hz=numl./denl

//figure (1) ;plzr (Hz);zgrid ()

[hl1 fr]=frmag(Hz,512)

figure (1) ;plot2d(fr*fs,hl);xtitle (’Magnitude

Y

response ', "frequency in Hz’, "Mag’) ;
//Noise generation

original_signal=wavread (home/hyrkswamy /kswamy/
Coursework /SAP/wav/mask . wav ') ;
t=0:1/fs:(length(original_signal)-1)/fs;
noise=sin (2x%pi*xf*t);
noisy_signal=original_signal+noise;

filter_output=filter (numl,denl ,noisy_signal);

//Play back the original , noisy and filtered outputs
playsnd(original_signal,hfs);

pause;

playsnd(noisy_signal ,fs);

pause;

playsnd(filter_output ,fs);

52

Figure 12.1: Suppression of noise at a given frequency using Notch filter

53

10
11
12
13

14

15

Experiment: 13

Design of Resonator

Scilab code Solution 13.1 Design of a Notch filter to filter noise at a given
frequency

//scilab 5.5.2 | OS: Ubuntu 14.04

//Design a digital resonator that resonates at 1000
Hz. Assume Fs=8000 Hz.

// Calculate the pole location

//w=2xpixf/fs;

//Complex conjugate pair of poles at w=pi/4 and —pi
/4

//Assume radius=0.98 (near to unit circle but inside

the unit circle)

//Scilab Program:
clc;
clear;
close;
£=1000; //input (" Enter the frequency in Hz”);
//1000
fs=8000; //input (" Enter the sampling rate”);
//8000
r=0.98; //input (" Enter the radius of the pole in the

o4

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Figure 13.1: Design of a Notch filter to filter noise at a given frequency

z—plane”) ; //0.98
w=2x*Y%pi*f/fs;
polel=r*exp (%hi*w);
pole2=rxexp (-%ixw);

z=%Z;

numl=real (z~(2));

denl=real(z~(2) -1.3859293*%z+0.9604) ;

Hz=numl./denl;
//figure ;

//plzr (Hz);

[h1 fr]l=frmag(Hz,1024) ;
figure;

plot2d (fr*xfs,hl);

xtitle ("Magnitude response’, frequency

.
b

in Hz’, 'Mag’)

95

	
	Discrete-time signals
	Verification of Sampling Theorem
	Impulse response of the LTI system
	Frequency response of the LTI system
	Linear and Circular convolution
	Spectral analysis using DFT
	FIR filter design
	Design of Hilbert transformer using FIR filter
	Design of digital differentiator using FIR filter
	Design of IIR filter
	Application of IIR filter
	Design of Notch filter
	Design of Resonator

