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Experiment: 1

Linear Convolution Without
Using Inbuilt Scilab
Convolution Function

Scilab code Solution 1.0 Experiment Number 1

//AIM: Linear convolution without using inbuilt
Scilab convolution function.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Given that x(n)={1,2,3,4,5,6,7,8} and h(n)={1,2}

//Soln:

x0=1;

x1=2;

x2=3;

x3=4;

x4=5;

x5=6;

xX6=7;

x7=8;

hOo=1;
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h1=2;

xhn0O_a=x0xhO0;
xhnl_a=x1%*h0;
xhn2_a=x2+*h0;
xhn3_a=x3*h0;
xhn4_a=x4x%*h0;
xhn5_a=x5%*h0;
xhn6_a=x6xh0;
xhn7_a=x7*h0;

xhnO_b=x0%*h1l;
xhnl_b=x1%*hil;
xhn2_b=x2%*hl;
xhn3_b=x3%*hl;
xhn4_b=x4+*hl;
xhnb5_b=x5%*h1l;
xhn6_b=x6x%h1l;
xhn7_b=x7x%*h1l;

yO=xhnO_a;

yl=xhnO_b+xhnl_a;
y2=xhnl_b+xhn2_a;
y3=xhn2_b+xhn3_a;
y4=xhn3_b+xhn4_a;
y5=xhn4_b+xhnb5_a;
y6=xhnb5_b+xhn6_a;
y7=xhn6_b+xhn7_a;

y8=xhn7_b;

disp({,y0,y1,y2,y3,y4,y5,y6,y7,y8,}, "Output of

linear

convolution i.e y(n)

)
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Experiment: 2

Derive The Four Point Twiddle

Factor Matrix

Scilab code Solution 2.0 Experiment Number 2

//AIM: Derive the 4 point twiddle factor matrix.
//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

W40=cos (0) -(sqrt (-1)*sin (0));

Wal=cos (%pi/2) -(sqrt(-1))*(sin(%pi/2));
W4a2=cos (%pi) -(sqrt (-1)) *(sin(%pi));

Wa3=cos ((3x%pi) /2) -(sqrt (-1))*sin ((3*%pi) /2);

disp (W40, "W40=")
disp (W41, 'W4l=")
disp (W42, 'W42=")
disp (W43, 'W43=")
W44=W40;
w49=w41,;
W46=W42;



20
21
22
23
24
25
26
27
28

29
30
31
32

33
34
35

36

37

38
39
40
41
42
43

W4 _raw_matrix= [W40 W40 W40 W40;
W40 W41 W42 W43;
W40 W42 W44 W46,
W40 W43 W46 W49]
disp(W4_raw_matrix,  'W4d_raw_matrix=")
disp(’Type resume in console and press enter’)
pause
a=ceil (- 1.225D-16);
disp(a, 'Imaginary part of W42 & Imaginary part of
W46 i.e. ceil(— 1.225D—-16)=")
b=ceil (- 1.837D-16) ;
disp (b, "Real part of W43 i.e. ceil(— 1.837D—16)=")
c=int (6.123D-17) ;
disp(c, "Real part of W4l & Real part of W49 i.e. int
(6.123D—-17)=")

//So W4 can be modified as follows
d=real (W42);//Imaginary part is ignored since it is
Zero
e=imag (W43)*sqrt (-1);//Real part is ignored since it
1s zero
f=imag(W41)*(sqrt(-1));//Real part is ignored since
it 1s zero

W4=[W40 W40 W40 W40;

W40 £ d e;

W40 d W44 d;

W40 e d f]
disp(W4, Final W4 matrix =")
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Experiment: 3

Four Point Dit-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 3.0 Experiment Number 3

//AIM: Four point DIT-FFT without using inbuilt
Scilab FFT function

//Computing four point DFT for x(n)={1,2,3,4} using
Decimation in Time—Fast

//Fourier transform (i.e. DIT-FFT )

//without using readymade inbuilt Scilab functions
for DFT/FFT.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let us begin with the programming.For

understanding ,let us write the given
//data as
[/x(0)=1;x(1)=2,x(2)=3,x(3)=4
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x0=1;

x2=3;

x1=2;

x3=4;

//Stage I computation

x0a=x2+x0; //Computing Stage—I output at position 1

disp(x0a, 'Stage—I output at position 17)

x2b=(x2-x0)*(-1) ; //Computing Stage—I output at
position 2

disp (x2b, "Stage—I output at position 27)

x1c=x3+x1;//Computing Stage—I output at position 3

disp(xlc,’Stage—I output at position 37)

x3d=(x3-x1)*(-1); //Computing Stage—I output at
position 4

disp(x3d, "Stage—I output at position 47)

//Stage—Il computation

x3d1=x3d*(-sqrt (-1));// Multiply by (—j) in the last

line

disp(x3d1l, ’Stage—II input at the fourth line 7)

X0=x1c+x0a; //Computing final stage output value X(0)

disp (X0, "The final stage output X(0)=")

X1=x3d1+x2b; //Computing final stage output value X
(1)

disp (X1, 'The final stage output X(1)=")

X2=(x1c-x0a)*(-1);//Computing final stage output
value X(2)

disp (X2, 'The final stage output X(2)=")

X3=(x3d1-x2b)*(-1);//Computing final stage output
value X(3)

disp (X3, 'The final stage output X(3)=")

disp({,X0,X1,X2,X3,}, ’So,the DFT of x(n) using
Decimation—in—Time Fast Fourier Transform (DIT-FFT
) is X(k)=")
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Experiment: 4

Four Point Idit-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 4.0 Experiment Number 4

//AIM: Four point IDIT-FFT without using inbuilt
Scilab FFT function

//Computing four point IDFT for X(k)={10,—2+2]
,—2,—2—2j} using

//Inverse Decimation in Time—Fast Fourier transform
(i.e. IDIT-FFT )

//without using readymade inbuilt Scilab functions

for IDFT/IFFT.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let us begin with the programming.For

understanding ,let us write the given
//data as

11
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//X(0)=10;X(1)=—242j ,X(2)=—2,X(3)=2-2j

X0c=10; //X0c means complex conjugate of XO

X2c=-2; //X2c¢c means complex conjugate of X2

X1c=(-2)+((-1)*(2)*(sqrt (-1)));//Xlc means complex
conjugate of X1

X3c=(-2) -((-1)*(2) *(sqrt (-1)));//X3c means complex
conjugate of X3

disp(X0c, 'X*(0)=")

disp (X2c, 'Xx*(2)=")

disp (X1lc, 'Xx*(1)=")

disp (X3c, 'Xx*(3)=")

x0_star=(((X3c+X1c)*(1))+((X2c+X0c) *(1)))*(1/4)

disp(xO_star, 'xx(0)=")

x1_star=(((X3c-X1c)*(-1)*(-sqrt(-1)))+(X2c-X0c)*(-1)
)x(1/4);

disp(xl_star, 'xx(1)=")

x2_star=(((X3c+X1c)*(1) -(X2c+X0c))*(-1))*x(1/4);

disp(x2_star, 'x*(2)=")

x3_star=((((X3c-X1c)*(-1)*(-sqrt(-1))) -((X2c-X0c)
*(-1)))*x(-1))*(1/4);

disp(x3_star, 'x*(3)=")

disp({,x0_star,xl_star,x2_star,x3_star,}, 'xx(n)=")

//The computed value is xx*(n). But we need x(n) as
final output.

//We will separate real part of xx(n)

//We will separate imaginary part of xx(n) and take
its complex conjugate by

//multiplying by a factor of (—1)

x0_star_real=real (x0O_star);

x0_star_conj=(-1)*(imag(x0O_star));

x1l_star_real=real(xl_star);

x1l_star_conj=(-1)*(imag(xl_star));

x2_star_real=real (x2_star) ;

x2_star_conj=(-1)*(imag(x2_star));

x3_star_real=real (x3_star);

x3_star_conj=(-1)*(imag(x3_star));

//Finally ; we will add the real part and the
imaginary part whose complex

12
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//conjugate is taken to get x(0),(1),x(2) and x(3)
x0=x0_star_real+x0O_star_conj
xl=xl_star_real+xl_star_conj
x2=x2_star_real+x2_star_conj
x3=x3_star_real+x3_star_conj
disp({,x0,x1,x2,x3,}, 'So,the IDFT of X(k) using
Inverse Decimation—in—Time Fast Fourier Transform

(IDIT-FFT) is x(n)=")

Scilab code Solution 4.1 Experiment Number 4 extra solution

//AIM: Four point IDIT-—FFT without using inbuilt
Scilab FFT function
// (This is an extra solution)

//Computing four point IDFT for X(k)={10,—-2+2j
,—2,-2-2j} using

//Inverse Decimation in Time—Fast Fourier transform
(i.e. IDIT-FFT )

//without using readymade inbuilt Scilab functions
for IDFT/IFFT.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let us begin with the programming.For
understanding ,let us write the given

//data as

//X(0)=10;X(1)=2+2j ,X(2)=2X(3)=22j

X0_conj=10; //X0_conj means complex conjugate of XO

X2_conj=-2;//X2_conj means complex conjugate of X2

X1_conj=(-2)+((-1)*(2) *(sqrt (-1)));//X1_conj means
complex conjugate of X1

X3_conj=(-2)-((-1)*(2)*(sqrt (-1)));//X3_conj means

13
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complex conjugate of X3

disp(X0_conj, 'Xx(0)=")

disp(X2_conj, 'Xx(2)=")

disp(X1_conj, 'Xx(1)=")

disp(X3_conj, 'Xx*(3)=")

//Stage I computation

X0a=X2_conj+X0_conj;//Computing Stage—I output at
line 1

disp(XOa, ’Stage—I output at line 17)

X2b=(X2_conj-X0_conj)*(-1);//Computing Stage I
output at line 2

disp (X2b, 'Stage—I output at line 27)

X1c=X3_conj+X1_conj;//Computing Stage—I output at
line 3

disp(X1lc, 'Stage—I output at line 37)

X3d=(X3_conj-X1_conj)*(-1);//Computing Stage—I
output at line 4

disp (X3d, ’Stage—I output at line 47)

//Stage Il computation

X3d1=X3d*(-sqrt(-1));// Multiply by (—j) in the last

line
disp(X3d1, ’Stage—II input at the fourth line 7)
x0_star=X1c+X0a; //Computing stage—II output value at
line 1

disp(xO_star, 'The stage—II output value at line 1=7)

x1_star=X3d1+X2b;//Computing stage Il output value
at line 2

disp(xl_star, 'The stage—II output value at line 2 =
)

x2_star=(X1c-X0a)*(-1);//Computing stage—II output
value at line 3

disp(x2_star, 'The stage—II output valueat line 3=")

x3_star=(X3d1-X2b)*(-1);//Computing stage—II output
value at line 4

disp(x3_star, 'The stage—II output value at line 4=")

//Now we will multiply stage—II output values
individually with a factor of

//(1/N). Here N=4,So we will multiply by (1/4)

b

14
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xO_star_on_multiplication=(1/4)*(x0_star);// Multiply
by (1/4)
disp(x0O_star_on_multiplication, 'x*(0)=")
x1_star_on_multiplication=(1/4)*(x1_star);//Multiply
by (1/4)
disp(xl_star_on_multiplication, 'xx(1)=")
x2_star_on_multiplication=(1/4)*(x2_star);//Multiply
by (1/4)
disp(x2_star_on_multiplication, 'x%(2)=")
x3_star_on_multiplication=(1/4)*(x3_star);//Multiply
by (1/4)
disp(x3_star_on_multiplication, 'x*(3)=")
disp({,x0_star_on_multiplication,
xl_star_on_multiplication,
x2_star_on_multiplication,
x3_star_on_multiplication,}, 'xx*(n)=")
x0_star_real=real (x0O_star_on_multiplication);
x0_star_conj=(-1)*(imag(xO_star_on_multiplication));
xl_star_real=real(xl_star_on_multiplication);
xl_star_conj=(-1)*(imag(xl_star_on_multiplication));
x2_star_real=real (x2_star_on_multiplication);
x2_star_conj=(-1)*(imag(x2_star_on_multiplication));
x3_star_real=real (x3_star_on_multiplication);
x3_star_conj=(-1)*(imag(x3_star_on_multiplication));
x0=x0_star_real+x0O_star_conj
xl=x1_star_real+xl_star_conj
x2=x2_star_real+x2_star_conj
x3=x3_star_real+x3_star_conj
disp({,x0,x1,x2,x3,}, So,the IDFT of X(k) using
Inverse Decimation—in—Time Fast Fourier Transform
(IDIT-FFT) is x(n)=")

15
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Experiment: 5

Four Point Dif-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 5.0 Experiment Number 5

//AIM: Four point DIF-FFT without using inbuilt
Scilab FFT function

//Computing four point DFT for x(n)={1,2,3,4} using

//Decimation in Frequency—Fast Fourier transform (i.
e. DIF-FFT )without using

//readymade inbuilt Scilab functions for DFT/FFT.

//Software version Scilab 5.5.2
//OS windows 10

clc;

clear;

x0=1;

x1=2;

x2=3;

x3=4,;

//Stage I computation

16
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x0a=x2+x0; //Computing Stage—I output at position 1

disp (x0a, 'Stage—I output at position 17)

x1b=(x3+x1);//Computing Stage—I output at position 2

disp(x1b, ’Stage—I output at position 27)

x2c=(x2-x0)*(-1); //Computing Stage—I output at
position 3

disp (x2c, 'Stage—I output at position 37)

x3d=(x3-x1)*(-1); //Computing Stage—I output at
position 4

disp(x3d, 'Stage—I output at position 47)

//Stage—Il computation

x3d1=x3d*(-sqrt (-1));// Multiply by (—j) in the last
line

disp(x3d1l, ’Stage—II input at the fourth line 7)

X0=x1b+x0a; //Computing final stage output value X(0)

disp (X0, "The final stage output X(0)=")

X2=(x1b-x0a)*(-1); //Computing final stage output
value X(1)

disp (X2, 'The final stage output X(2)=")

X1=(x3d1+x2c);//Computing final stage output value X
(2)

disp (X1, 'The final stage output X(1)=")

X3=(x3d1-x2c)*(-1);//Computing final stage output
value X(3)

disp (X3, 'The final stage output X(3)=")

disp({,X0,X1,X2,X3,}, ’So,the DFT of x(n) using
Decimation—in—Frequency Fast Fourier Transform (

DIF-FFT) is X(k)=")

17
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Experiment: 6

Four Point Idif-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 6.0 Experiment Number 6

//AIM: Four point IDIF-FFT without using inbuilt
Scilab FFT function

//Computing four point IDFT for X(k)={10,—2+2]
,—2,—2—2j} using

//Inverse Decimation in Frequency—Fast Fourier
transform (i.e. IDIF-FFT )

//without using readymade inbuilt Scilab functions

for IDFT/IFFT.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let us begin with the programming.For

understanding ,let us write the given
//data as

18
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//X(0)=10;X(1)=—242j ,X(2)=—2,X(3)=2-2j

X0c=10; //X0c means complex conjugate of XO

X1c=(-2)+((-1) *(2) *(sqrt (-1)));//Xlc means complex
conjugate of X1

X2c=-2; //X2c¢c means complex conjugate of X2

X3c=(-2) -((-1)*(2) *(sqrt (-1)));//X3c means complex
conjugate of X3

disp(X0c, 'X*(0)=")

disp (X1lc, 'Xx(1)=")

disp (X2c, 'Xx*(2)=")

disp (X3c, 'Xx*(3)=")

x0_star=((X3c+X1c)*(1) +(X2c+X0c) * (1)) *(1/4);//
Computing xx(0)

disp(x0O_star, 'x*(0)=")

x2_star=((((X3c+X1c)*(1)) -((X2c+X0c)*(1)))*x(-1))
*(1/4);//Computing xx*(2)

disp(x2_star, 'xx(2)=")

x1_star=((X3c-X1c)*(-1)*(-sqrt (-1))+(X2c-X0c)*x(-1))
*(1/4) ;//Computing xx(1)

disp(xl_star, 'xx*(1)=")

//Computing xx(3)

x3_star=((((X3c-X1c)*(-1)*(-sqrt(-1))-(X2c-X0c) *(-1)
))*(-1))*(1/4) ;

disp(x3_star, 'xx(3)=")

disp({,x0O_star,xl_star,x2_star,x3_star,}, 'xx(n)=")

//The computed value is xx(n). But we need x(n) as
final output.

//We will separate real part of xx(n)

//We will separate imaginary part of xx(n) and take
its complex conjugate by

//multiplying by a factor of (—1)

x0_star_real=real (x0O_star);

x0_star_conj=(-1)*(imag(x0O_star)) ;

x1l_star_real=real (x1l_star);

xl_star_conj=(-1)*(imag(xl_star));

x2_star_real=real (x2_star) ;

x2_star_conj=(-1)*(imag(x2_star));

x3_star_real=real (x3_star);
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x3_star_conj=(-1)*(imag(x3_star));

//Finally , we will add the real part and the
imaginary part whose complex

//conjugate is taken to get xx(0),(1).,x(2) and x(3)

x0=x0_star_real+x0_star_conj;//Computing x(0)

x1=x1_star_real+xl_star_conj;//Computing x(1)

x2=x2_star_real+x2_star_conj;//Computing x(2)

x3=x3_star_real+x3_star_conj;//Computing x(3)

disp({,x0,x1,x2,x3,}, So,the IDFT of X(k) using
Inverse Decimation—in—Frequency Fast Fourier
Transform (IDIF-FFT) is x(n)=")

Scilab code Solution 6.1 Experiment Number 6 extra solution

//AIM: Four point IDIF-FFT without using inbuilt
Scilab FFT function
// (This is an extra solution)

//Computing four point IDFT for X(k)={10,—-2+2j
,—2,-2-2j} using Inverse

//Decimation in Frequency—Fast Fourier transform (1i.
e. IDIF-FFT )

//without using readymade inbuilt Scilab functions
for IDFT/IFFT.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let us begin with the programming.For
understanding ,let us write the given

//data as

//X(0)=10;X(1)=-2+2j ,X(2)=—2,X(3)=2-2j

X0_conj=10; //X0_conj means complex conjugate of X(O)

X1_conj=(-2)+((-1)*(2) *(sqrt (-1)));//X1_conj means

20
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complex conjugate of X(1)

X2_conj=-2;//X2_conj means complex conjugate of X(2)

X3_conj=(-2) -((-1)*(2) *(sqrt (-1)));//X3_conj means
complex conjugate of X(3)

disp(X0_conj, 'X*(0)=")

disp(Xi_conj, 'Xx(1)=")

disp(X2_conj, 'Xx(2)=")

disp(X3_conj, 'X*(3)=")

//Stage I computation

X0a=X2_conj+X0_conj;//Computing Stage—I output at
line 1

disp (X0a, 'Stage—I output at line 17)

X1b=(X3_conj+X1_conj);//Computing Stage—I output at
line 2

disp(X1b, 'Stage—I output at line 27)

X2c=(X2_conj-X0_conj)*(-1);//Computing Stage—I
output at line 3

disp (X2c, ’Stage—I output at line 37)

X3d=(X3_conj-X1_conj)*(-1);//Computing Stage—I
output at line 4

disp(X3d, 'Stage—I output at line 47)

//Stage Il computation

X3d1=X3d*(-sqrt(-1));// Multiply by (—j) in the last

line
disp(X3d1l, 'Stage—II input at the fourth line )
x0_conj=X1b+X0a; //Computing stage—II output value at
line 1

disp(xO_conj, 'The stage—II output value at line 1=")

x2_conj=(X1b-X0a)*(-1);//Computing stage—II output
value at line 2

disp(x2_conj, 'The stage—II output value at line 2=7)

x1_conj=X3d1+X2c;//Computing stage—II output value
at line 3

disp(xl_conj, "The stage—II output value at line 3=")

x3_conj=(X3d1-X2c)*(-1);//Computing stage—II output
value at line 4

disp(x3_conj, 'The stage—II output value at line 4=")

//Now we will multiply stage—II output values
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individually with a factor of
// (1/N). Here N=4.,So we will multiply by (1/4)
x0_conj_final=(1/4)*(x0_conj)
disp(x0O_conj_final, 'x%(0)=")
x2_conj_final=(1/4)*(x2_conj)
disp(x2_conj_final, 'xx*(2)=")
x1_conj_final=(1/4)*(x1_conj)
disp(xl_conj_final, 'xx(1)=")
x3_conj_final=(1/4)*(x3_conj)
disp(x3_conj_final, 'xx(3)=")
disp({,x0_conj_final ,x1_conj_final ,x2_conj_final,
x3_conj_final,}, 'So,the IDFT of X(k) using
Inverse Decimation—in—Frequency Fast Fourier
Transform (IDIF-FFT) is x(n)=")
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Experiment: 7

Derive The Six Point Twiddle
Factor Matrix [w6] Useful For
Dft Computation

Scilab code Solution 7.0 Experiment Number 7

//AIM: Derive the six point twiddle factor matrix [W6
] useful for DFT computation

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Computing the twiddle factor values for W60, W61,
W62, W63, W64, W65 -

W60=int (cos (0) ) -(sqrt (-1)*int (sin (0)));

W6l=cos ((2*x%pix*1)/6) -(sqrt(-1))*sin ((2*x%pix*1)/6);

W62=(cos ((2*x%pi*2)/6))-(sqrt (-1))*sin ((2*%pi*2)/6);

W63=cos ((2*%pi*3)/6)-int ((sqrt (-1))*sin ((2*%pi*3)/6)
)

W64d=cos ((2*%pix*4)/6) -(sqrt(-1))*(sin ((2*%pix*4)/6));

W65=cos ((2*%pi*5)/6) -(sqrt (-1))*sin ((2*%pi*5)/6);

disp (W60, "W60=")
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disp (W61, "W61=")
disp (W62, "W62=")
disp (W63, "W63=")
disp (W64, 'W64=")
disp (W65, "W65=")

/ /W60=W612=W618=W624=W630=W636;// Cyclic property of

twiddle factor
W66=W60 ;
W612=W66 ;
W618=W612;
W624=W618;
W630=W624;
W636=W630;

/ /W61=W67=W613=W619=W625 //Cyclic property of
twiddle factor

W67=W61;

W613=W67;

W619=W613;

W625=W619;

//W62=W68=W614=W620 //Cyclic property of twiddle
factor

W68=W62;

W614=W68;

W620=W614;

//W63=W69=W615=W621 //Cyclic property of twiddle
factor

W69=W63;

W615=W69;

W621=W615;

//W64=W610=W616=W622 //Cyclic property of twiddle
factor

W610=W64;

W616=W610;
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W622=W616 ;

//W65=W613=W621=W629 //Cyclic property of twiddle

factor
W613=W65;

W621=W613;
W629=W621;

W= [W60 W60 W60 W60 W60 W60;W60 W61l W62 W63 W64 W65
;W60 W62 W64 W66 W68 W610;W60 W63 W66 W69 W612
W615; W60 W64 W68 W612 W616 W620;W60 W65 W610 W615

W620 W625];

56
o7

//Displaying the W6 matrix

disp (W6,

" [Wol

)
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Experiment: 8

Derive The Eight Point
Twiddle Factor Matrix For
Computing Inverse Dft

Scilab code Solution 8.0 Experiment Number 8

//AIM: Derive the 8 point twiddle factor matrix for
computing inverse DFT

// i.e. W8 matrix derivation

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Computing the twiddle factor values for W80, W81,
W82, W83, W84, W85, W86, W87

W80=1int (cos (0) ) +(sqrt (-1)*int (sin (0)));

W81=cos ((2*%pix*1)/8)+(sqrt(-1))*sin ((2*%pix*1)/8);

W82=int (cos ((2*%pi*2)/8))+(sqrt (-1))*sin ((2*x%pi*2)
/8) ;

W83=cos ((2x%pi*3)/8) +(sqrt(-1))*sin ((2*%pix*3)/8);

W84=cos ((2*%pix*4)/8)+(sqrt(-1))*int (sin ((2*%pi=*4)/8)
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)
W85=cos ((2*%pi*5)/8)+(sqrt(-1))*sin ((2*%pi*5)/8);
W86=1int (cos ((2*%pi*6)/8))+(sqrt(-1))*xsin ((2*%pi*6)
/8);
W87=cos ((2*%pi*7)/8)+(sqrt (-1))*sin ((2*%pi*7)/8);

disp (W80, "W80=")
disp (W81, "W81=")
disp (W82, "W8&2=")
disp (W83, 'W83=")
disp (W84, 'W84=")
disp (W85, "W85=")
disp (W86, "W86=")
disp (W87, 'W87=")

/ / W80=W88=W816=W824=W832=W840=W848;// Cyclic property
of twiddle factor

w88=W80;

W816=W88;

W824=W816;

W832=W824;

W840=W832;

W848=W840;

/ /W81=W89=W817=W825=W833=W841=W849;/ / Cyclic property
of twiddle factor

W89=W81;

W817=W89;

W825=W817;

W833=W825;

W841=W833;

W849=wW841;

/ /W82=W810=W818=W826=W834=W842;// Cyclic property of
twiddle factor

W810=W82;

W818=W810;

W826=W818;
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W834=W826;
W842=W834;

//W83=W811=W819=W827=W835=W843; // Cyclic
twiddle factor

W811=W83;

W819=W811;

W827=W819;

W835=W827;

W843=W835;

/ /W84=W812=W820=W828=W836=W844;// Cyclic
twiddle factor

W812=W84;

W820=W812;

W828=W820;

W836=W828;

W844=W836 ;

/ /W85=W813=W821=W829=W837=W845;// Cyclic
twiddle factor

W813=W85;

W821=W813;

W829=W821;

W837=W829;

W845=W837;

/ / W86=W814=W822=W830=W838=W846;// Cyclic
twiddle factor

W814=W86;

W822=W814;

W830=W822;

W838=W830;

W846=W838;

/ JW8T=W815=W823=W831=W839=W847; // Cyclic
twiddle factor
W815=W87;
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W823=W815;
W831=W823;
W839=W831;
W847=W839;

W8_star= [W80 W80 W80 W80 W80 W80 W80 W80;W80 W81
W82 W83 W84 W85 W86 W87 ;W80 W82 W84 W86 W88 W810
W812 W814;W80 W83 W86 W89 W812 W815 W818 W821;W80

W84 W88 W812 W816 W820 W824 W828;W80 W85 W810
W815 W820 W825 W830 W835;W80 W86 W812 W818 W824
W830 W836 W842;W80 W87 W814 W821 W828 W835 W842
W8491];

disp(W8_star, [W8x|=")
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Experiment: 9

Filtering Of Long Data
Sequences

Scilab code Solution 9.0 Experiment Number 9

//AIM: Filtering of long data sequences

//Overlap—add method using FFT-IFFT technique (

without wusing inbuilt Scilab
//functions for DFT/IDFT or FFT/IFFT)

//Software version Scilab 5.5.2
//OS windows 10

clc;
clear;

//Given that x(n)={1,2,3,4,5,6,7,8} and h(n)={1,2}

//Nx=

//Since Nx=8 Nh=2 and we know Nx=m#Nh(so 8=m=x2)

//Soln:

xn =[1 2 3 4 5 6 7 8];

hn =[1 2];

8

giving m=4;and so x(n) has been

//partitioned
xOn =[1 2];
xln =[3 4];

into 4 blocks

30
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34

35

36

37
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40

x2n =[5 6];
x3n =[7 8];

//Length of each partitioned input
and x3n is 2(i.e.
//Here length of impulse response array h(n)

.e. M=2) or Nh=2

L=2)

i.e x0On,xIn,x2n

is 2 (i

//Hence ;we pad the partitioned sequence and h(n)
with zeros such that the length
// of each one becomes ’atleast’ L+M-1 i.e. 3
//But since we know 4 point DFT matrix ,we can pad an
additional zero & make the
//length of each sequence =4
xOn_z=[1 2 0 0];//x0n_z represents zero pad is

to x0On

xin_z=[3 4 0 0];//xIn_z represents zero pad is

to xln

x2n_z=[5 6 0 0];//x2n_z represents zero pad is

to x2n

x3n_z=[7 8 0 0];//x3n_z represents zero pad is

to x3n

hn_z=[1 2 0 0];//hn_z represents

hn

//Computing FFT for

x0n_z_0=1;//x0n_z_0
x0n_z

xOn_z_1=2;//x0n_z_1
x0n_z

x0n_z_2=0;//x0n_z_2
x0n_z

x0n_z_3=0;//x0n_z_3
x0n_z

x0n_z
represents the 0th sample

represents the 1st sample
represents the 2nd sample

represents the 3rd sample

done

done

done

done

zero pad is done to

of

of

of

of

X0_0=(x0On_z_2+x0n_z_0)*(1)+(x0n_z_3+x0n_z_1)*(1)
X0_1=(x0n_z_3-x0n_z_1)*(-1)*(-sqrt(-1))+(x0n_z_2-

x0n_z_0)*x(-1);

X0_2=((x0n_z_3+x0n_z_1)*(1)-(x0n_z_2+x0n_z_0)*(1))

x(-1);

X0_3=((x0On_z_3-x0n_z_1)*(-1)*x(-sqrt(-1))-(x0n_z_2-
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61

x0n_z_0)*x(-1))*(-1);
disp({,X0_.0,X0_1,X0_2,X0_3,}, ’So,the DFT of x0(n)
using Decimation—in—Time Fast Fourier Transform (

DIT-FFT) is X0(k)=")

//Computing FFT for xln_z

xln_z_0=3;//x1ln_z_0 represents the Oth sample of
xln_z

xin_z_1=4;//x1n_z_1 represents the 1st sample of
xln_z

x1n_z_2=0;//x1n_z_2 represents the 2nd sample of
xln_z

x1n_z_3=0;//x1In_z_3 represents the 3rd sample of
xln_z

X1_0=(x1n_z_2+x1ln_z_0)*(1)+(xln_z_3+xin_z_1)*(1)

X1_1=(xln_z_ 3-xln_z_1)*(-1)*(-sqrt(-1))+(xln_z_2-
xln_z_0)*(-1);

X1 _2=((x1ln_z_3+x1ln_z_ 1)*(1)-(x1ln_z 2+x1n_z_0)*(1))
*(-1);

X1_3=((x1ln_z_3-x1n_z_1)*(-1)*(-sqrt(-1))-(xln_z_2-
x1ln_z_0)*(-1))x(-1);

disp({,X1_0,X1_1,X1_2,X1_3,}, So,the DFT of xI(n)
using Decimation—in—Time Fast Fourier Transform (
DIT-FFT) is X1(k)=")

//Computing FFT for x2n_.z

x2n_z_0=5;//x2n_z_0 represents the Oth sample of
xX2n_z

x2n_z_1=6;//x2n_z_1 represents the 1st sample of
X2n_7

x2n_z_2=0; //x2n_z_2 represents the 2nd sample of
X2n_z

x2n_z_3=0;//x2n_z_3 represents the 3rd sample of
xX2n_z

X2_0=(x2n_z_2+x2n_z_0)*(1)+(x2n_z_3+x2n_z_1)*(1)

X2_1=(x2n_z_3-x2n_z_1)*(-1)*(-sqrt(-1))+(x2n_z_2-
x2n_z_0)*(-1);

X2_2=((x2n_z_3+x2n_z_1)*(1)-(x2n_z_2+x2n_z_0)*(1))
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*(-1);
X2_3=((x2n_z_3-x2n_z_1)*(-1)*(-sqrt(-1))-(x2n_z_2-

x2n_z_0)*(-1))*(-1);
disp({,X2_0,X2_1,X2_2,X2_3,}, 'So,the DFT of x2(n)

using Decimation—in—Time Fast Fourier Transform (

DIT-FFT) is X2(k)=")

//Computing FFT for x3n_z

x3n_z_0=7;//x3n_z_0 represents the Oth sample of
xX3n_z

x3n_z_1=8;//x3n_z_1 represents the 1st sample of
xX3n_z

x3n_z_2=0;//x3n_z_2 represents the 2nd sample of
xX3n_7

x3n_z_3=0;//x3n_z_3 represents the 3rd sample of
xX3n_z

X3_0=(x3n_z_2+x3n_z_0)*(1)+(x3n_z_3+x3n_z_1)*(1)

X3_1=(x3n_z_3-x3n_z_1)*(-1)*(-sqrt(-1))+(x3n_z_2-
x3n_z_0)*x(-1);

X3_2=((x3n_z_3+x3n_z_1)*(1) -(x3n_z_2+x3n_z_0)*(1))
*(-1);

X3_3=((x3n_z_3-x3n_z_1)*(-1)*x(-sqrt(-1))-(x3n_z_2-
x3n_z_0)*x(-1))*(-1);

disp({,X3_.0,X3_1,X3_.2,X3_3,}, ’So,the DFT of x3(n)
using Decimation—in—Time Fast Fourier Transform (

DIT-FFT) is X3(k)=")

//Computing FFT for hn_z
hn_z_0=1;//hn_z_0 represents the Oth sample of hn_z
hn_z_1=2;//hn_z_1 represents the 1st sample of hn_z
hn_z_2=0;//hn_z_2 represents the 2nd sample of hn_z
hn_z_3=0;//hn_z_3 represents the 3rd sample of hn_z
Hk_O0=(hn_z_2+hn_z_0)*(1)+(hn_z_3+hn_z_1)*(1)
Hk_1=(hn_z_3-hn_z_1)*(-1)*(-sqrt(-1))+(hn_z_2-hn_z_0
)*¥(-1);
Hk_2=((hn_z_3+hn_z_1)*(1)-(hn_z_2+hn_z_0)*(1))*(-1) ;
Hk_3=((hn_z_3-hn_z_1)*(-1)*(-sqrt(-1))-(hn_z_2-
hn_z_0)*(-1))*(-1);
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disp({,Hk_0,Hk_1,Hk_2,Hk_3,}, 'So,the DFT of h(n)
using Decimation—in—Time Fast Fourier Transform (
DIT-FFT) is H(k)=")

YOk0=(X0_0) .*x(Hk_0);
YOk1=(X0_1) .*x(Hk_1);
YOk2=(X0_2) .*(Hk_2);
YO0k3=(X0_3) .*x(Hk_3);
YOk=[YOkO YOkl YOk2 YOk3];
disp(Y0k, 'YO(k)=")

//Computing IDFT of YOk using IDIT-FFT

YOkO_Oc=real (YOkO)-(sqrt(-1))*imag(YOk0);//YOKO0_ Oc
means complex conjugate of YO0kO

YOkO_1c=real (YOk1)-(sqrt (-1))*imag(Y0k1);//YOKO lc
means complex conjugate of YOkl

YOkO_2c=real (YOk2)-(sqrt(-1))*imag(YO0k2);//YOKO0_2c
means complex conjugate of YO0k2

YOkO_3c=real (YOk3)-(sqrt (-1))*imag(YO0k3);//YOKO0 3c
means complex conjugate of YO0k3

a0=(((YOkO0_3c+Y0kO_1c)*(1))+((YOk0_2c+Y0k0_0c)*(1)))
x(1/4) ;

al=(((YOk0_3c-YOkO_1c)*(-1)*(-sqrt (-1)))+(Y0k0_2c-
YOkO_0c)*x(-1))*(1/4);

a2=(((YOkO0_3c+Y0kO_1c)*(1)-(YOkO_2c+Y0k0_0Oc))*(-1))
x(1/4) ;

a3=((((Y0k0_3c-Y0kO_1c)*(-1)*(-sqrt(-1)))-((Y0k0_2c-
YOkO_0c)*x(-1)))*(-1))*(1/4);

a0_real=real (al);
a0_conj=(-1)*(imag(al)) ;
al_real=real(al);
al_conj=(-1)*(imag(al));
a2_real=real(a2);
a2_conj=(-1)*x(imag(a2));
a3_real=real (a3);
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a3_conj=(-1)*(imag(a3));

//Finally , we will add the real part and the
imaginary part whose complex

//conjugate is taken

a0’=al_real+alO_conj

al’=al_real+al_conj

a2’=a2_real+a2_conj

a3’=a3_real+ad_conj

a=[al0’,al’,a2’,a3"’]

disp(a, ’So,the IDFT of YO(k) using Inverse
Decimation—in—Time Fast Fourier Transform (IDIT—

FFT) is yO(n)=")

Y1k0=(X1_0) .*(Hk_0) ;
Y1k1=(X1_1) .*(Hk_1);
Y1k2=(X1_2) .*(Hk_2);
Y1k3=(X1_3) .*(Hk_3);
Y1ik=[Y1k0 Y1kl Y1k2 Y1k3];
disp(Yik, 'Y1(k)=")

//Computing IDFT of Ylk using IDIT-FFT

Y1k0_Oc=real (Y1k0)-(sqrt (-1))*imag (Y1k0);//Y1K0 Oc
means complex conjugate of Y1kO

Y1k0_1c=real (Y1k1)-(sqrt(-1))*imag(Y1k1);//Y1KO0_ lc
means complex conjugate of Y1kl

Y1k0_2c=real (Y1k2)-(sqrt (-1))*imag(Y1k2);//Y1K0 2¢c
means complex conjugate of Y1k2

Y1k0_3c=real (Y1k3)-(sqrt (-1))*imag(Y1k3);//Y1K0 3c
means complex conjugate of Y1k3

bO=(((Y1k0_3c+Y1k0_1c)*(1))+((Y1k0_2c+Y1k0_0c)*(1)))
x(1/4) ;

b1=(((Y1k0_3c-Y1k0_1c)*(-1)*(-sqrt(-1)))+(Y1k0_2c-
Y1k0_0c)*x(-1))*(1/4);

b2=(((Y1k0_3c+Y1k0_1c)*(1)-(Y1k0_2c+Y1k0_0c))*(-1))
x(1/4) ;

b3=((((Y1k0_3c-Y1k0_1c)*(-1)*(-sqrt (-1)))-((Y1k0_2c-
Y1k0_0c)*(=-1)))*x(-1))*(1/4);
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141 bO_real=real (b0);

142 bO_conj=(-1)*(imag (b0));

143 bil_real=real(bl);

144 bl_conj=(-1)*(imag(bl));

145 b2_real=real (b2);

146 b2_conj=(-1)*(imag(b2));

147 b3_real=real (b3);

148 b3_conj=(-1)*(imag(b3));

149 //Finally , we will add the real part and the
imaginary part whose complex

150 //conjugate is taken

151 b0’=bO_real+bO_conj

152 bl’=bl_real+bl_conj

153 b2’=b2_real+b2_conj

154 b=[b0’,b1’,b2’,b3 "]

155 disp (b, 'So,the IDFT of Y1(k) using Inverse
Decimation—in—Time Fast Fourier Transform (IDIT—
FFT) is yl(n)=")

156

157 Y2k0=(X2_0) .*x(Hk_0);

158 Y2k1=(X2_1) .x(Hk_1);

159 Y2k2=(X2_2) .*x(Hk_2);

160 Y2k3=(X2_3) .*x(Hk_3);

161 Y2k=[Y2k0 Y2kl Y2k2 Y2k3];

162 disp(Y2k, 'Y2(k)=")

163

164 //Computing IDFT of Y2k using IDIT-FFT

165 Y2k0_Oc=real (Y2k0)-(sqrt (-1))*imag(Y2k0);//Y2K0_ 0Oc
means complex conjugate of Y2kO0

166 Y2k0_1c=real (Y2k1)-(sqrt (-1))*imag(Y2k1);//Y2K0 lc
means complex conjugate of Y2kl

167 Y2k0_2c=real (Y2k2)-(sqrt(-1))*imag(Y2k2);//Y2K0 2c
means complex conjugate of Y2k2

168 Y2k0_3c=real (Y2k3)-(sqrt(-1))*imag(Y2k3);//Y2K0 3c
means complex conjugate of Y2k3

169

170 c0=(((Y2k0_3c+Y2k0_1c)*(1))+((¥Y2k0_2c+Y2k0_0c)*(1)))
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x(1/4) ;
c1=(((Y2k0_3c-Y2k0_1c)*(-1)*(-sqrt(-1)))+(Y2k0_2c-
Y2k0_0c)*x(-1))*(1/4);
c2=(((Y2k0_3c+Y2k0_1c) *(1) -(Y2k0_2c+Y2k0_0c))*(-1))
x(1/4) ;
c3=((((Y2k0_3c-Y2k0_1c)*(-1)*(-sqrt (-1))) -((Y2k0_2c -
Y2k0_0c)*x(-1)))*x(-1))*(1/4);

cO_real=real(c0);

cO0_conj=(-1)*(imag(c0));

cl_real=real(bl);

cl_conj=(-1)*(imag(cl));

c2_real=real(c2);

c2_conj=(-1)*(imag(c2));

c3_real=real(c3);

c3_conj=(-1)*(imag(c3));

//Finally , we will add the real part and the
imaginary part whose complex

//conjugate is taken

cO0’=cO_real+cO_conj

cl’=cl_real+cl_conj

c2’=c2_real+c2_conj

c3’=c3_real+c3_conj

c=[c0’,cl1’,c2’,c3’]

disp(c, ’So,the IDFT of Y2(k) using Inverse
Decimation—in—Time Fast Fourier Transform (IDIT—
FFT) is y2(n)=")

Y3k0=(X3_0) .*x(Hk_0) ;
Y3k1=(X3_1) .*x(Hk_1);
Y3k2=(X3_2) .*(Hk_2);
Y3k3=(X3_3) .*x(Hk_3);
Y3k=[Y3k0 Y3kl Y3k2 Y3k3];
disp(Y¥3k, 'Y3(k)=")

//Computing IDFT of Y3k using IDIT-FFT

Y3k0_Oc=real (Y3k0) -(sqrt (-1))*imag(Y3k0);//Y3K0 Oc
means complex conjugate of Y3k0
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201

202

203

204
205

206

207

208

209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225

226
227
228

Y3k0_1c=real (Y3k1)-(sqrt(-1))=*imag(¥Y3k1l);//Y3KO0_lc
means complex conjugate of Y3kl

Y3k0_2c=real (Y3k2)-(sqrt(-1))*imag(Y3k2);//Y3K0 2¢c
means complex conjugate of Y3k2

Y3k0_3c=real (Y3k3)-(sqrt (-1))*imag(Y3k3);//Y3K0 3c
means complex conjugate of Y3k3

dOo=(((Y3k0_3c+Y3k0_1c)*(1))+((Y3k0_2c+Y3k0_0c)*(1)))
x(1/4) ;

d1=(((Y3k0_3c-Y3k0_1c)*(-1)*x(-sqrt (-1)))+(Y3k0_2c-
Y3k0_0c)*x(-1))*(1/4);

d2=(((Y3k0_3c+Y3k0_1c)*(1)-(Y3k0_2c+Y3k0_0c))*(-1))
x(1/4) ;

d3=((((Y3k0_3c-Y3k0_1c)*x(-1)*(-sqrt(-1)))-((Y3k0_2c-
Y3k0_0c)*x(=-1)))*x(-1))*(1/4);

dO_real=real (d0) ;

dO_conj=(-1)*(imag(d0));

dl_real=real(dl);

dl_conj=(-1)*(imag(dl));

d2_real=real (d2);

d2_conj=(-1)*(imag(d2));

d3_real=real(d3);

d3_conj=(-1)*(imag(d3));

//Finally , we will add the real part and the
imaginary part whose complex

//conjugate is taken

d0’=d0_real+dO_conj

dl’=d1l_real+dl_conj

d2’=d2_real+d2_conj

d3’=d3_real+d3_conj

d=[d0’,d1’,d2’,d3’]

disp(d, 'So,the IDFT of Y3(k) using Inverse
Decimation—in—Time Fast Fourier Transform (IDIT—
FFT) is y3(n)=")

w=[a 0 0 0 0 0 0];
x=[0 0 b 0 0 0 0];
y=[0 0 0 0 ¢ O 0];
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229
230

231
232

z=[0 0 0 0 O O dJ;

disp(z,y,x,w, After overlapping ,the sequences
be seen as follows:

yn=w+x+y+z;
disp(yn, "The output

)

will
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Experiment: 10

Implement Impulse Invariant

Method

Scilab code Solution 10.0 Experiment Number 10

//AIM: Implement Impulse Invariant method

//Find out H(z)
5Hz sampling

using impulse
frequency

invariances method at

//from H(s) where H(s)=1/(s+1)(s+2)

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

s=%s;

s2=-2;

sl=-1;

di=(s-s1);

p2=(s-s2);

if (s1) then
sl=-1;
s2=-2;
s=s1;

// When pole=-1
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d2=(s-s82);
numl=1/d2; // Value of Al
hi=syslin(’c’, numl/d1l)
end
disp (h1l)
disp(numi, 'value of Al=")
if (s2) then // When pole=-2
sl=-1;
s2=-2;
s=s2;
pl=(s-s1);
num2=1/pl; // Value of A2
h2=syslin(’c’, num2/p2)
end
disp (h2)
disp (num2, 'Value of A2=")
Hs=(h1)+(h2);

disp(Hs, "Transfer function of analog filter H(s)=")

//Obtain the Z—transform using impulse invariance
transformation equation

//1/(s—pk)=1/[1—exp (pkxTs)+Z"(—1)]

Fs=5;

Ts=1/Fs;

disp(’sec’,Ts, ’Sampling time Ts=’)

//we have poles at sl=-1 and s2=-2

Z=poly (0,"Z")

//1/(s+1)=a;We consider

a=numl/(1-exp(s1*(Ts))*Z"(-1));

//1/(s+2)=b;We consider

b=num2/(1-exp(s2*(Ts))*Z~(-1));

disp(a,’1/s+1=")

disp(b, ’1/s4+2=")

//The Transfer function of digital filter is given
by,

//H(Z)= _ (k=1)"N(Ak/(1—e " (pkxTs)*Z"(—1) )

b

J//H(Z)=A1/1—exp (pl*Ts)*Z"(—1)+A2/1—exp(pl*Ts)*Z"(—1)

Hz=(a+b) ;

disp(Hz, 'The required transfer function for digital
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Experiment: 11

To Design Butterworth Filter
With Minimum Readymade
Scilab Functions

Scilab code Solution 11.0 Experiment Number 11

//AIM:To design Butterworth filter with minimum
readymade Scilab functions

//To compute the order and the poles of Butterworth
low pass filter using

// Bilinear transformation (ASSUME T=1SEC) ;

//Attenuation in passband=1.93dB

//Attenuation in stopband=13.97dB

//Passband edge frequency=0.2

//Stopbandband edge frequency=0.6

//Software version Scilab 5.5.2
//OS windows 10

clc;

clear;

s=poly(0,”7s”)

T=1;
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Ap=1.93;//in dB

As=13.97;//in dB

wp=0.2*(%pi)

ws=0.6*(%pi)

ohmp=2/T*(tan (wp/2))

ohms=2/T*(tan(ws/2))

//ORDER CALCULATION

N=(0.5)*(1log ((((107(0.1%As))-1)/((107(0.1%xAp))-1))))
/(log (ohms/ohmp))

Nr=int (N)

x=N-int (N)

if (x>0)

Nr=Nr+1
ohmc=(ohmp/ (10~ (0.1xAp)-1) " (1/(2%Nr)))

// Calculation of poles

i=0:1:Nr-1;

pi_plus=ohmc*exp (%i*(Nr+2xi+1) *(%pi)/(2*Nr))
pi_minus=-ohmc*xexp (%hi*(2+2.%xi+1)*x(%pi)/(2xNr))
disp (wp, 'wp=")

disp(ws, "ws=")

disp (ohmp, 'ohmp=")

disp (ohms, "ohms=")

disp(N, 'N=")

disp(Nr, ’Roundoff value of N now denoted as Nr =")
disp (ohmc, "Cutoff frequency : ohmc=")
disp(’Displaying the poles’)

disp(pi_plus, "pi_plus=")

disp(pi_minus, pi_minus=")

h2=zeros (1,2)

h=ohmc/(s-(-0.53-0.53%%1))
hi=ohmc/(s-(-0.53+0.53%%1i))

h2=hx*hi;
disp(h,hl, 'Now the analog transfer function H(s) is
the multiplication of the following two terms : )

disp(h2, "After multiplication ,H(s)=")
g=numer (h2) ;
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disp(g, 'Numerator of the analog transfer function=")

//Obtaining H(z) using Bilinear Transformation
Method

z=poly(0,”z”

s=(2/T)*((z-1)/(z+1));//Bilinear Transformation
Method

disp (’Type resume in Console )

pause

a=0.5618 +1.06*s+s"2;

b=(1/a)

c=0.5645360%b;

disp(c, 'The digital transfer function H(z)=")
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Experiment: 12

To Design Chebyshev Filter
With Minimum Readymade
Scilab Functions.

Scilab code Solution 12.0 Experiment Number 12

//AIM:To design Chebyshev filter with minimum
readymade Scilab functions

//Design of low pass 1 rad/sec bandwidth Chebyshev
filter

//Acceptable passband ripple=2 db

//cut off radian frequency 1 radian/sec

//stop band attenuation of 20db or greater beyond
1.3 radian/sec

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Given cut—off frequency is 1 rad/sec. This means
that it is a normalized low

//pass Chebyshev filter
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fc=1;//from the above question

Ap=2; //from the above question

As=20; //from the above question

ohms=1.3; //from the above question

is a normalized filter .Hence the value

ohmp=1;//1t

is 1 rad/sec

//Steps for
a=(0.1%2)
b=10"a
c=b-1

calculation of

episelon=c~(1/2)
disp (episelon,”

//Steps for

calculation of order
d=(-20)*((log(episelon)/log(10)))

:77 )

e=(20) *(log(ohms)/1log (10))

f=6+e
g=26+d
N=g/f
Nr=int (N)
x=N-int (N)
if (x>0)
Nr=Nr+1

//N=(((—20)*log (episelon))+6+20)/(6+20%(log (ohms)))

D=-20;//given in db

//N=—(20xlogl10 (episelon))—6(N—1)—(20*log (ohms) )
hi1=((episelon) "2)

h2=1+h1l
h3=h2"(1/2)
h4=h3+1
g=(episelon)
h5=h4/g

beta=(h5) " (1/Nr)

disp (N,”N=")

disp (Nr,” The round—off value of N(now called as Nr)=

77)
disp (beta,”

:77 )
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//for the determination of poles we have

r=(ohmp) *(((beta~2) -1) /(2*beta))

disp(r,” The minor axis of the ellipse (r)=")

R=ohmp* ((beta”2+1) /(2*beta))

disp(R,”The major axis of the ellipse (R)=");

// thetai=(%pi/2)+((2i4+%pi) /2«N)// 1=0123

/] for i=0

theta0=((%pi/2) +((2*x0x%pi+%pi) /(2%4)))

disp(thetal,” theta0=")

// for i=1

thetal=((%pi/2) +((2x1*%pi+%pi) /(2%4)))

disp (thetal,” thetal=")

/] for i=2

theta2=((%pi/2) +((2*2xYpi+%pi) /(2%4)))

disp(theta2,” theta2=")

// for i=3

theta3=((%pi/2) +((2%3*%pi+lpi) /(2%4)))

disp(theta3,” theta3=")

//the pole position is given by

//sp=rxcos(thetai)+jsin(thetai)

i=0:1:Nr-1

//Computing real and imaginary part of s0,sl,s2,s3

h6=((r)*(cos(theta0))) //Computing real part of s0

h7=(%i)*(R)*(sin(theta0)) //Computing imaginary part

of s0

s0=h6+h7; //Combining real and imaginary part of s0

disp(s0,”s0=")

h8=((r)*(cos (thetal))) //Computing real part of sl

h9=(%i)*(R)*(sin(thetal)) //Computing imaginary part

of sl

s1=h8+h9; //Combining real and imaginary part of sl

disp(s1,”7s1=")

h10=((r)*(cos(theta2))) //Computing real part of s2

h11=(%i)*(R)*(sin(theta2)) //Computing imaginary
part of s2

s2=h10+h11; //Combining real and imaginary part of
s2
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disp(s2,”7s2=")

h12=((r)*(cos(theta3d))) //Computing real part of s3

h13=(%i)*(R)*(sin(thetald)) //Computing imaginary
part of s3

s3=h12+h13; //Combining real and imaginary part of
s13

disp(s3,7s3=")

//Calculation of transfer function:

s=poly(0,”s”)

h=1/((s-(s0)) *(s-(s1))*(s-(s2))*x(s-(s83)))

disp(h,”h=")

disp(’Now type resume and press enter in the Console
window 7)

pause

//Now value of b0 is required which is nothing but
the value of the constant

//term in the denominator of h (obtained by seeing
the calculated value in the

//console window by inserting a ’'pause’ in the
program )

b0=0.2057651;

//Also we see in the Console window that the rounded
value of the order is 4

//and since 4 is an even number,so the formula for
calculation of i will be

// i=b0/(sqrt(1+ ~2))

i=b0/(sqrt (1+(episelon) "2))

disp(i, i=")

Hs=ixh//Calculated value of Ha(s)

disp (Hs, 'The required transfer function Ha(s)=’) //
Displaying the calculated value of the transfer
function

49



W N

© 00 N O U

10
12
13
14

15

Experiment: 13

Designing Two Stage
Decimator

Scilab code Solution 13.0 Experiment Number 13

//AIM: To implement a two stage decimator for the
following specifications:

// Sampling rate of the input signal=20,000 Hz

//D=100,Passband=0 to 40Hz, Transition Band=40 to 50
Hz,Passband ripple=0.02,Stopband ripple=0.002

//Software version Scilab 5.5.2
//OS windows 10

clc;

clear;

// Let us consider the combination 25%4

D1=25;

D2=4,;

//such that D=D1%D2

F0=20000; //Fo is the sampling frequency (or sampling
rate) of the input signal(given in the question)

Fp=40; //Fp is the passband edge frequency(given in
the question)
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Fstop=50; //Fstop is the stopband edge frequency (
given in the question)

F1=F0/D1;

F2=F1/D2;

disp (" Hertz” ,FO,”The given value of F0=")

disp (" Hertz” ,F1,”The calculated wvalue of F1=")

disp (" Hertz” ,F2,”7The calculated value of F2=")

Dp=0.02;

Ds=0.002;

// calculations for stage I...

//Step 1:Passband:0<=F<=Fp that means 0<= F<= 40
Hertz

//Step 2:Stopband: Fi—Fstop<=F<=F(i—1)/2

//Here i=1 for Stage—I

LROS1=F1-Fstop; //Here, LROSI=Lowest limit of
stopband for Stage—I

HROS1=F0/2; //Here, HROSI=Highest limit of stopband
for Stage—1I

disp(”Hertz” ,LROS1,” The lowest limit of stopband(for

Stage—1) =")

disp(”Hertz” ,HR0S1,” The highest limit of stopband (
for Stage—I) =")

disp ("Hertz” ,HROS1,”<=F<=",” Hertz” ,LROS1,” So the
range of stopband for Stage I is:”,)

Tmax1=LR0OS1;

Tminl=Fp;

DF1=(Tmax1-Tmin1) /FO

Dp1=(Dp/2);

Ds1=Ds;

disp(’Hertz ’,DF1,”The calculated value of F1 =)

disp (Dpl,”The calculated value of pl =")

disp(Ds1,”The value of sl = s =")

N1=(((-10*x10og10(Dp1*Ds1)-13)/(14.6%DF1))+1); //
Computing the filter length(N1) of Stage—I

disp(N1,” Filter length ,N1=")

NR1=int (N1);//Extracting only the integer part from
N1

x1=N1-int (N1);//x1 is the decimal part of overall NI
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if (x1>0) //If the decimal part is greater than zero
NR1=NR1+1 //Then increment the extracted integer
part i.e. NRIl by 1 to get a round—off value
of the length of filter of Stage—I

disp(NR1,” Filter length NIl(round—off value)now known

as NRI=")

// calculations for stage—II ...

//Step 1:Passband:0<=F<=Fp that means 0<= F<= 40
Hertz

//Step 2:Stopband: Fi-Fstop<=F<=F(i-1)/2

//Here i=2 for Stage—II

disp (” Now displaying the values for
stage—II 7)

LR0OS2=F2-Fstop; //Here, LROS2=Lowest limit of
stopband for Stage—II

HROS2=F1/2//Here, HROS2=Highest limit of stopband
for Stage—1II

disp(”Hertz” ,LR0OS2,” The lowest limit of stopband(for

Stage—1I1) =")

disp(” Hertz” ,HR0S2,” The highest limit of stopband (
for Stage—II) =")

disp (" Hertz” ,HR0S2 ,"<=F<=",” Hertz” ,LR0S2,”So the
range of stopband for Stage—II is:”,)

//1f transition band is given in the question ,then
always given transition width is applicable for
the second stage.

//Given transition width is 40Hz to 50Hz.

//It indicates that for this stage ,the stopband
should start at 50Hz.

a=50;

disp (" Hertz” ,a,”The new value of the lowest limit of

stopband (for Stage—II) =")

disp (" Hertz” ,HR0S2,” The highest limit of stopband is

re—written (for Stage—II)which is =")

disp (” Hertz” ,HR0S2,"<=F<=" ,” Hertz” ,a,” So the new
modified range of stopband for Stage—II is:”,)

Tmax2=50;

Tmin2=Fp;
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DF2=(Tmax2-Tmin2) /F1
Dp2=(Dp/2);
Ds2=Ds;
disp(’Hertz ’,DF2,” The calculated value of F2 =)
disp (Dp2,”The calculated value of p2 =")
disp(Ds2,”The value of s2 = sl = s =")
N2=(((-10*10g10(Dp2*Ds2) -13) /(14.6*DF2))+1);//
Computing the filter length (N2) of Stage—II
disp(N2,” Filter length ,N2=")
NR2=int (N2); //Extracting only the integer part from
N2
x2=N2-int (N2);//x is the decimal part of overall N2
if (x2>0)//If the decimal part is greater than zero
NR2=NR2+1 //Then increment the extracted integer
part i.e. NR2 by 1 to get a round—off value
of the length of filter of Stage—II
disp(NR2,” Final filter length ,N2(round—off value)now
known as NR2=")
// Calculation of MPS(Multiplications per second) and
TSR(Total Storage requirement) ...
/ /MPS= of [i=1 to T](NixFi)
//Here I=Total No. of stages=2
MPS=(NR1*F1)+(NR2*F2) ;
disp (MPS,”The value of No. of MPS(Multiplications
per second)=")
//TSR=  of [i=1 to I](Ni)
//Here I=Total No. of stages=2
TSR=NR1+NR2
disp (TSR,”The value of TSR(Total storage requirement
)=")
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Experiment: 14

Compute Dft Using Matrix

Approach And Then Using Dft
Properties.

Scilab code Solution 14.0 Experiment Number 14

//Compute DFT using matrix approach & then using DFT
properties.

// (i) = x(n)={1,2,3,4), find DFT X(k)

// (ii) : Using results obtained in part (i) & not
otherwise ,

// find DFT of following sequences

// x1(n)={4,1,2,3}

/] x2(n)={2,3,4,1}

// x3(n)={3,4,1,2}

// x4(n)={4,6,4,6}

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let us first define the W4 matrix

Wa=[1 1 1 1 ;1 -sqrt(-1) -1 sqrt(-1);1 -1 1 -1;1
sqrt (-1) -1 -sqrt(-1)1;
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disp (W4, 'Wi=")

//Now let us define the input sequence

xn=[1;2;3;4];//The input sequence x(n)has been
arranged as a column matrix

//DET is obtained by multiplying the twiddle matrix
W4 and the input sequence

Xk=W4*xn;

disp (Xk, 'DFT : X(k)=")

disp(’Type resume in console and press enter ’)

pause

X0=10

X1=-2+2*xsqrt (-1);

X2=-2

X3=-2-2*xsqrt (-1);

//(ii1) :x1(n)={4,1,2,3} and x(n)={1,2,3,4}

//x1(n) is obtained by delaying x(n) by 1 position
which means x1(n)=x(n—1)

//According to the circular time shift property : x(
n—1) gives DFT as X(k)xe (—j*2x%pixk*1/N)

//But 1=-1

al=cos (0) -(sqrt(-1)*sin (0));

//So, for k=0,

X10=X0.*real(al)-X0.*x(sqrt(-1)*imag(al))

disp(X10,’'X1(0)=")

//So, for k=1,

bl=int (cos (%pi/2)) -(sqrt (-1)*sin(%pi/2))

X11=X1x*b1l;

disp(X11, 'X1(1)=")

//For k=2,

cl=int (cos (%pi))-int ((sqrt (-1)*sin(%pi)));

X12=X2x*c1l;

disp(X12, 'X1(2)=")

//For k=3,

dli=int (cos ((3*%pi)/2))-int ((sqrt (-1)*sin ((3*%pi)/2))
)

X13=X3x*d1;

disp (X13,’'X1(3)=")
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disp ({,X10,X11,X12,X13,}, ’So, X1(k)=")

// (iii) : Now moving ahead to find X2(k)

//x2(n)={2,3,4,1} and x(n)={1,2,3,4}

//x2(n) is obtained by advancing x(n) by 1 position
which means x2(n)=x(n+1)

//According to the circular time shift property : x(
n—1) gives DFT as X(k)*e (—j*2*%pixkx1/N)

//But 1=2

a2=cos (0)+(sqrt (-1)*sin (0));

//So, for k=0,

X20=X0.*real (a2)-X0.*x(sqrt(-1)*imag(a2))

disp (X20, 'X2(0)=")

//So, for k=1,

b2=int (cos (%pi/2))+(sqrt (-1)*sin(%pi/2))

X21=X1%b2;

disp(X21,’'X2(1)=")

//For k=2,

c2=int (cos (%pi))+int ((sqrt (-1)*sin(%pi)));

X22=X2x*c2;

disp(X22,'X2(2)=")

//For k=3,

d2=int (cos ((3*%pi) /2))+int ((sqrt (-1)*sin ((3*%pi) /2))
)

X23=X3*d2;

disp (X23,'X2(3)=")

disp({,X20,X21,X22,X23,}, 'So, X2(k)=")

// (iv) : Now moving ahead to find X3(k)

//x3(n)={3.,4,1,2} and x(n)={1,2,3,4}

//x3(n) is obtained by shifting x(n) by 2 positions
which means x3(n)=x[n(+/—)2]

//According to the circular time shift property : x|
n(+/—-)2] gives DFT as X(k)xe (—j*2x%pixk*1/N)

a3=cos (0)+(sqrt (-1)*sin (0));

//So, for k=0,

X30=X0.*real (a3)-X0.*x(sqrt(-1)*imag(a3))

disp (X30,’'X3(0)=")
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81 //So, for k=1,

82 b3=int (cos (%pi))-(sqrt(-1)*sin(%pi))

83 X31=X1x%*b3;

84 disp(X31,’X3(1)=")

85 //For k=2,

86 c3=int (cos(2*x%pi))-int ((sqrt(-1)*sin (2*%pi)));

87 X32=X2x*c3;

88 disp(X32,'X3(2)=")

89 //For k=3,

90 d3=int (cos (3*%pi))-int ((sqrt(-1)*sin(3*%pi)));

91 X33=X3%*d3;

92 disp(X33,’'X3(3)=")

93 disp({,X30,X31,X32,X33,}, 'So, X3(k)=")

94

95 // (v) : Now moving ahead to find X4(k)

96 //x4(n)={4,6,4,6} and x(n)={1,2,3,4}

97 //Both are related as x4 (n)=x(n)+x[n(+/—)2]

98 //Using half period shift property, X4(k)=X(k)+[(—1)
“k]xX(k)

99 //For k=0,

100 X40=X0+[(-1) "0]=*X0

101 disp (X40, 'X40=")

102 //For k=1,

103 X41=X1+[(-1) "1]1=*X1

104 disp(X41, 'X41=")

105 //For k=2,

106 X42=X2+[(-1) "2]*X2

107 disp(X42, 'X42=")

108 //For k=3,

109 X43=X3+[(-1)"3]*X3

110 disp(X43, 'X43=")

111 disp({,X40,X41,X42,%43,}, So, X4(k)=")
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