
Scilab Manual for
Discrete Time Signal Processing
by Prof Mr. Rajiv Suhas Tawde

Others
Mumbai University/padmabhushan

Vasantdada Patil Pratishthan’S College Of
Engineering (Pvppcoe)1

Solutions provided by
Prof Mr. Rajiv Suhas Tawde

Others
Mumbai University/padmabhushan Vasantdada Patil Pratishthan’S College Of Engineering (Pvppcoe)

February 18, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 4

1 Linear Convolution Without Using Inbuilt Scilab Convolu-
tion Function 5

2 Derive The Four Point Twiddle Factor Matrix 7

3 Four Point Dit-Fft Without Using Inbuilt Scilab Fft Func-
tion 9

4 Four Point Idit-Fft Without Using Inbuilt Scilab Fft Func-
tion 11

5 Four Point Dif-Fft Without Using Inbuilt Scilab Fft Func-
tion 16

6 Four Point Idif-Fft Without Using Inbuilt Scilab Fft Func-
tion 18

7 Derive The Six Point Twiddle Factor Matrix [w6] Useful
For Dft Computation 23

8 Derive The Eight Point Twiddle Factor Matrix For Com-
puting Inverse Dft 26

9 Filtering Of Long Data Sequences 30

10 Implement Impulse Invariant Method 40

2

11 To Design Butterworth Filter With Minimum Readymade
Scilab Functions 43

12 To Design Chebyshev Filter With Minimum Readymade
Scilab Functions. 46

13 Designing Two Stage Decimator 50

14 Compute Dft Using Matrix Approach And Then Using Dft
Properties. 54

3

List of Experiments

Solution 1.0 Experiment Number 1 5
Solution 2.0 Experiment Number 2 7
Solution 3.0 Experiment Number 3 9
Solution 4.0 Experiment Number 4 11
Solution 4.1 Experiment Number 4 extra solution 13
Solution 5.0 Experiment Number 5 16
Solution 6.0 Experiment Number 6 18
Solution 6.1 Experiment Number 6 extra solution 20
Solution 7.0 Experiment Number 7 23
Solution 8.0 Experiment Number 8 26
Solution 9.0 Experiment Number 9 30
Solution 10.0 Experiment Number 10 40
Solution 11.0 Experiment Number 11 43
Solution 12.0 Experiment Number 12 46
Solution 13.0 Experiment Number 13 50
Solution 14.0 Experiment Number 14 54

4

Experiment: 1

Linear Convolution Without
Using Inbuilt Scilab
Convolution Function

Scilab code Solution 1.0 Experiment Number 1

1 //AIM: L in ea r c o nv o l u t i o n wi thout u s i n g i n b u i l t
S c i l a b c onv o l u t i o n f u n c t i o n .

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 //Given tha t x (n) ={1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} and h (n) ={1 ,2}
7 // So ln :
8 x0=1;

9 x1=2;

10 x2=3;

11 x3=4;

12 x4=5;

13 x5=6;

14 x6=7;

15 x7=8;

16 h0=1;

5

17 h1=2;

18 xhn0_a=x0*h0;

19 xhn1_a=x1*h0;

20 xhn2_a=x2*h0;

21 xhn3_a=x3*h0;

22 xhn4_a=x4*h0;

23 xhn5_a=x5*h0;

24 xhn6_a=x6*h0;

25 xhn7_a=x7*h0;

26

27 xhn0_b=x0*h1;

28 xhn1_b=x1*h1;

29 xhn2_b=x2*h1;

30 xhn3_b=x3*h1;

31 xhn4_b=x4*h1;

32 xhn5_b=x5*h1;

33 xhn6_b=x6*h1;

34 xhn7_b=x7*h1;

35

36 y0=xhn0_a;

37 y1=xhn0_b+xhn1_a;

38 y2=xhn1_b+xhn2_a;

39 y3=xhn2_b+xhn3_a;

40 y4=xhn3_b+xhn4_a;

41 y5=xhn4_b+xhn5_a;

42 y6=xhn5_b+xhn6_a;

43 y7=xhn6_b+xhn7_a;

44 y8=xhn7_b;

45 disp({,y0,y1,y2 ,y3,y4,y5 ,y6 ,y7,y8 ,}, ’ Output o f
l i n e a r c o nv o l u t i o n i . e y (n)= ’)

6

Experiment: 2

Derive The Four Point Twiddle
Factor Matrix

Scilab code Solution 2.0 Experiment Number 2

1 //AIM: Der ive the 4 po i n t tw i dd l e f a c t o r matr ix .
2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 W40=cos(0) -(sqrt(-1)*sin (0));

7 W41=cos(%pi/2) -(sqrt(-1))*(sin(%pi /2));

8 W42=cos(%pi) -(sqrt(-1))*(sin(%pi));

9 W43=cos ((3* %pi)/2) -(sqrt(-1))*sin ((3* %pi)/2);

10

11 disp(W40 , ’W40= ’)
12 disp(W41 , ’W41= ’)
13 disp(W42 , ’W42= ’)
14 disp(W43 , ’W43= ’)
15

16 W44=W40;

17 W49=W41;

18 W46=W42;

19

7

20 W4_raw_matrix= [W40 W40 W40 W40;

21 W40 W41 W42 W43;

22 W40 W42 W44 W46;

23 W40 W43 W46 W49]

24 disp(W4_raw_matrix , ’ W4 raw matrix= ’)
25 disp(’ Type resume in c o n s o l e and p r e s s e n t e r ’)
26 pause

27 a=ceil(- 1.225D-16);

28 disp(a, ’ Imag inary pa r t o f W42 & Imag inary pa r t o f
W46 i . e . c e i l (− 1 . 2 25D−16)= ’)

29 b=ceil(- 1.837D-16);

30 disp(b, ’ Real pa r t o f W43 i . e . c e i l (− 1 . 8 37D−16)= ’)
31 c=int (6.123D-17);

32 disp(c, ’ Real pa r t o f W41 & Real pa r t o f W49 i . e . i n t
(6 . 1 2 3D−17)= ’)

33

34 //So W4 can be mod i f i e d as f o l l o w s :
35 d=real(W42);// Imag inary pa r t i s i g n o r ed s i n c e i t i s

z e r o
36 e=imag(W43)*sqrt(-1);// Real pa r t i s i g n o r ed s i n c e i t

i s z e r o
37 f=imag(W41)*(sqrt(-1));// Real pa r t i s i g n o r ed s i n c e

i t i s z e r o
38

39 W4=[W40 W40 W40 W40;

40 W40 f d e;

41 W40 d W44 d;

42 W40 e d f]

43 disp(W4, ’ F i n a l W4 matr ix = ’)

8

Experiment: 3

Four Point Dit-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 3.0 Experiment Number 3

1 //AIM: Four po i n t DIT−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2

3 //Computing f o u r po i n t DFT f o r x (n) ={1 ,2 ,3 ,4} u s i n g
Dec imat ion i n Time−Fast

4 // Fou r i e r t r an s f o rm (i . e . DIT−FFT)
5 // wi thout u s i n g readymade i n b u i l t S c i l a b f u n c t i o n s

f o r DFT/FFT.
6

7 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
8 //OS windows 10
9 clc;

10 clear;

11 // Let us beg in with the programming . For
under s tand ing , l e t us w r i t e the g i v en

12 // data as
13 //x (0) =1;x (1) =2 ,x (2) =3 ,x (3)=4

9

14 x0=1;

15 x2=3;

16 x1=2;

17 x3=4;

18 // Stage I computat ion
19 x0a=x2+x0;//Computing Stage−I output at p o s i t i o n 1
20 disp(x0a , ’ Stage−I output at p o s i t i o n 1 ’)
21 x2b=(x2 -x0)*(-1);//Computing Stage−I output at

p o s i t i o n 2
22 disp(x2b , ’ Stage−I output at p o s i t i o n 2 ’)
23 x1c=x3+x1;//Computing Stage−I output at p o s i t i o n 3
24 disp(x1c , ’ Stage−I output at p o s i t i o n 3 ’)
25 x3d=(x3 -x1)*(-1);//Computing Stage−I output at

p o s i t i o n 4
26 disp(x3d , ’ Stage−I output at p o s i t i o n 4 ’)
27 // Stage−I I computat ion
28 x3d1=x3d*(-sqrt(-1));// Mu l t i p l y by (− j) i n the l a s t

l i n e
29 disp(x3d1 , ’ Stage−I I i nput at the f o u r t h l i n e ’)
30 X0=x1c+x0a;//Computing f i n a l s t a g e output va lu e X(0)
31 disp(X0, ’ The f i n a l s t a g e output X(0)= ’)
32 X1=x3d1+x2b;//Computing f i n a l s t a g e output va l u e X

(1)
33 disp(X1, ’ The f i n a l s t a g e output X(1)= ’)
34 X2=(x1c -x0a)*(-1);//Computing f i n a l s t a g e output

va lu e X(2)
35 disp(X2, ’ The f i n a l s t a g e output X(2)= ’)
36 X3=(x3d1 -x2b)*(-1);//Computing f i n a l s t a g e output

va lu e X(3)
37 disp(X3, ’ The f i n a l s t a g e output X(3)= ’)
38 disp({,X0,X1,X2 ,X3 ,}, ’ So , the DFT o f x (n) u s i n g

Decimation−in−Time Fast Fou r i e r Transform (DIT−FFT
) i s X(k)= ’)

10

Experiment: 4

Four Point Idit-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 4.0 Experiment Number 4

1 //AIM: Four po i n t IDIT−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2

3 //Computing f o u r po i n t IDFT f o r X(k)={10,−2+2 j
,−2,−2−2 j } u s i n g

4 // I n v e r s e Dec imat ion i n Time−Fast Fou r i e r t r an s f o rm
(i . e . IDIT−FFT)

5 // wi thout u s i n g readymade i n b u i l t S c i l a b f u n c t i o n s
f o r IDFT/IFFT .

6

7 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
8 //OS windows 10
9 clc;

10 clear;

11 // Let us beg in with the programming . For
under s tand ing , l e t us w r i t e the g i v en

12 // data as

11

13 //X(0) =10;X(1)=−2+2j ,X(2)=−2,X(3)=−2−2 j
14 X0c =10; //X0c means complex c on j u ga t e o f XO
15 X2c=-2; //X2c means complex c on j u ga t e o f X2
16 X1c=(-2)+((-1) *(2)*(sqrt(-1)));//X1c means complex

c on j u ga t e o f X1
17 X3c=(-2) -((-1)*(2)*(sqrt(-1)));//X3c means complex

c on j u ga t e o f X3
18 disp(X0c , ’X∗ (0)= ’)
19 disp(X2c , ’X∗ (2)= ’)
20 disp(X1c , ’X∗ (1)= ’)
21 disp(X3c , ’X∗ (3)= ’)
22 x0_star =(((X3c+X1c)*(1))+((X2c+X0c)*(1)))*(1/4)

23 disp(x0_star , ’ x ∗ (0)= ’)
24 x1_star =(((X3c -X1c)*(-1)*(-sqrt(-1)))+(X2c -X0c)*(-1)

)*(1/4);

25 disp(x1_star , ’ x ∗ (1)= ’)
26 x2_star =(((X3c+X1c)*(1) -(X2c+X0c))*(-1))*(1/4);

27 disp(x2_star , ’ x ∗ (2)= ’)
28 x3_star =((((X3c -X1c)*(-1)*(-sqrt(-1))) -((X2c -X0c)

(-1)))(-1))*(1/4);

29 disp(x3_star , ’ x ∗ (3)= ’)
30 disp({,x0_star ,x1_star ,x2_star ,x3_star ,}, ’ x ∗ (n)= ’)
31 //The computed va lu e i s x ∗ (n) . But we need x (n) as

f i n a l output .
32 //We w i l l s e p a r a t e r e a l pa r t o f x ∗ (n)
33 //We w i l l s e p a r a t e imag ina ry pa r t o f x ∗ (n) and take

i t s complex c on j u ga t e by
34 // mu l t i p l y i n g by a f a c t o r o f (−1)
35 x0_star_real=real(x0_star);

36 x0_star_conj =(-1)*(imag(x0_star));

37 x1_star_real=real(x1_star);

38 x1_star_conj =(-1)*(imag(x1_star));

39 x2_star_real=real(x2_star);

40 x2_star_conj =(-1)*(imag(x2_star));

41 x3_star_real=real(x3_star);

42 x3_star_conj =(-1)*(imag(x3_star));

43 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

12

44 // c on j u ga t e i s taken to g e t x (0) , (1) , x (2) and x (3)
45 x0=x0_star_real+x0_star_conj

46 x1=x1_star_real+x1_star_conj

47 x2=x2_star_real+x2_star_conj

48 x3=x3_star_real+x3_star_conj

49 disp({,x0,x1,x2 ,x3 ,}, ’ So , the IDFT o f X(k) u s i n g
I n v e r s e Decimation−in−Time Fast Fou r i e r Transform
(IDIT−FFT) i s x (n)= ’)

Scilab code Solution 4.1 Experiment Number 4 extra solution

1 //AIM: Four po i n t IDIT−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2 // (This i s an e x t r a s o l u t i o n)
3

4 //Computing f o u r po i n t IDFT f o r X(k)={10,−2+2 j
,−2,−2−2 j } u s i n g

5 // I n v e r s e Dec imat ion i n Time−Fast Fou r i e r t r an s f o rm
(i . e . IDIT−FFT)

6 // wi thout u s i n g readymade i n b u i l t S c i l a b f u n c t i o n s
f o r IDFT/IFFT .

7

8 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
9 //OS windows 10

10 clc;

11 clear;

12 // Let us beg in with the programming . For
under s tand ing , l e t us w r i t e the g i v en

13 // data as
14 //X(0) =10;X(1)=−2+2j ,X(2)=−2,X(3)=−2−2 j
15 X0_conj =10; // X0 conj means complex c on j u ga t e o f XO
16 X2_conj =-2; // X2 conj means complex c on j u ga t e o f X2
17 X1_conj =(-2)+((-1) *(2)*(sqrt(-1)));// X1 conj means

complex c on j u ga t e o f X1
18 X3_conj =(-2) -((-1)*(2)*(sqrt(-1)));// X3 conj means

13

complex c on j u ga t e o f X3
19 disp(X0_conj , ’X∗ (0)= ’)
20 disp(X2_conj , ’X∗ (2)= ’)
21 disp(X1_conj , ’X∗ (1)= ’)
22 disp(X3_conj , ’X∗ (3)= ’)
23 // Stage I computat ion
24 X0a=X2_conj+X0_conj;//Computing Stage−I output at

l i n e 1
25 disp(X0a , ’ Stage−I output at l i n e 1 ’)
26 X2b=(X2_conj -X0_conj)*(-1);//Computing Stage−I

output at l i n e 2
27 disp(X2b , ’ Stage−I output at l i n e 2 ’)
28 X1c=X3_conj+X1_conj;//Computing Stage−I output at

l i n e 3
29 disp(X1c , ’ Stage−I output at l i n e 3 ’)
30 X3d=(X3_conj -X1_conj)*(-1);//Computing Stage−I

output at l i n e 4
31 disp(X3d , ’ Stage−I output at l i n e 4 ’)
32 // Stage I I computat ion
33 X3d1=X3d*(-sqrt(-1));// Mu l t i p l y by (− j) i n the l a s t

l i n e
34 disp(X3d1 , ’ Stage−I I i nput at the f o u r t h l i n e ’)
35 x0_star=X1c+X0a;//Computing s tage−I I output va l u e at

l i n e 1
36 disp(x0_star , ’ The s tage−I I output va l u e at l i n e 1= ’)
37 x1_star=X3d1+X2b;//Computing s tage−I I output va l u e

at l i n e 2
38 disp(x1_star , ’ The s tage−I I output va l u e at l i n e 2 = ’

)

39 x2_star =(X1c -X0a)*(-1);//Computing s tage−I I output
va lu e at l i n e 3

40 disp(x2_star , ’ The s tage−I I output v a l u e a t l i n e 3= ’)
41 x3_star =(X3d1 -X2b)*(-1);//Computing s tage−I I output

va lu e at l i n e 4
42 disp(x3_star , ’ The s tage−I I output va l u e at l i n e 4= ’)
43 //Now we w i l l mu l t i p l y s tage−I I output v a l u e s

i n d i v i d u a l l y with a f a c t o r o f
44 // (1/N) . Here N=4 ,So we w i l l mu l t i p l y by (1/4)

14

45 x0_star_on_multiplication =(1/4) *(x0_star);// Mu l t i p l y
by (1/4)

46 disp(x0_star_on_multiplication , ’ x ∗ (0)= ’)
47 x1_star_on_multiplication =(1/4) *(x1_star);// Mu l t i p l y

by (1/4)
48 disp(x1_star_on_multiplication , ’ x ∗ (1)= ’)
49 x2_star_on_multiplication =(1/4) *(x2_star);// Mu l t i p l y

by (1/4)
50 disp(x2_star_on_multiplication , ’ x ∗ (2)= ’)
51 x3_star_on_multiplication =(1/4) *(x3_star);// Mu l t i p l y

by (1/4)
52 disp(x3_star_on_multiplication , ’ x ∗ (3)= ’)
53 disp({, x0_star_on_multiplication ,

x1_star_on_multiplication ,

x2_star_on_multiplication ,

x3_star_on_multiplication ,}, ’ x ∗ (n)= ’)
54 x0_star_real=real(x0_star_on_multiplication);

55 x0_star_conj =(-1)*(imag(x0_star_on_multiplication));

56 x1_star_real=real(x1_star_on_multiplication);

57 x1_star_conj =(-1)*(imag(x1_star_on_multiplication));

58 x2_star_real=real(x2_star_on_multiplication);

59 x2_star_conj =(-1)*(imag(x2_star_on_multiplication));

60 x3_star_real=real(x3_star_on_multiplication);

61 x3_star_conj =(-1)*(imag(x3_star_on_multiplication));

62 x0=x0_star_real+x0_star_conj

63 x1=x1_star_real+x1_star_conj

64 x2=x2_star_real+x2_star_conj

65 x3=x3_star_real+x3_star_conj

66 disp({,x0,x1,x2 ,x3 ,}, ’ So , the IDFT o f X(k) u s i n g
I n v e r s e Decimation−in−Time Fast Fou r i e r Transform
(IDIT−FFT) i s x (n)= ’)

15

Experiment: 5

Four Point Dif-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 5.0 Experiment Number 5

1 //AIM: Four po i n t DIF−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2

3 //Computing f o u r po i n t DFT f o r x (n) ={1 ,2 ,3 ,4} u s i n g
4 // Dec imat ion i n Frequency−Fast Fou r i e r t r an s f o rm (i .

e . DIF−FFT) wi thout u s i n g
5 // readymade i n b u i l t S c i l a b f u n c t i o n s f o r DFT/FFT.
6

7 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
8 //OS windows 10
9 clc;

10 clear;

11 x0=1;

12 x1=2;

13 x2=3;

14 x3=4;

15 // Stage I computat ion

16

16 x0a=x2+x0;//Computing Stage−I output at p o s i t i o n 1
17 disp(x0a , ’ Stage−I output at p o s i t i o n 1 ’)
18 x1b=(x3+x1);//Computing Stage−I output at p o s i t i o n 2
19 disp(x1b , ’ Stage−I output at p o s i t i o n 2 ’)
20 x2c=(x2 -x0)*(-1);//Computing Stage−I output at

p o s i t i o n 3
21 disp(x2c , ’ Stage−I output at p o s i t i o n 3 ’)
22 x3d=(x3 -x1)*(-1);//Computing Stage−I output at

p o s i t i o n 4
23 disp(x3d , ’ Stage−I output at p o s i t i o n 4 ’)
24 // Stage−I I computat ion
25 x3d1=x3d*(-sqrt(-1));// Mu l t i p l y by (− j) i n the l a s t

l i n e
26 disp(x3d1 , ’ Stage−I I i nput at the f o u r t h l i n e ’)
27 X0=x1b+x0a;//Computing f i n a l s t a g e output va lu e X(0)
28 disp(X0, ’ The f i n a l s t a g e output X(0)= ’)
29 X2=(x1b -x0a)*(-1);//Computing f i n a l s t a g e output

va lu e X(1)
30 disp(X2, ’ The f i n a l s t a g e output X(2)= ’)
31 X1=(x3d1+x2c);//Computing f i n a l s t a g e output va lu e X

(2)
32 disp(X1, ’ The f i n a l s t a g e output X(1)= ’)
33 X3=(x3d1 -x2c)*(-1);//Computing f i n a l s t a g e output

va lu e X(3)
34 disp(X3, ’ The f i n a l s t a g e output X(3)= ’)
35 disp({,X0,X1,X2 ,X3 ,}, ’ So , the DFT o f x (n) u s i n g

Decimation−in−Frequency Fast Fou r i e r Transform (
DIF−FFT) i s X(k)= ’)

17

Experiment: 6

Four Point Idif-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 6.0 Experiment Number 6

1 //AIM: Four po i n t IDIF−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2

3 //Computing f o u r po i n t IDFT f o r X(k)={10,−2+2 j
,−2,−2−2 j } u s i n g

4 // I n v e r s e Dec imat ion i n Frequency−Fast Fou r i e r
t r an s f o rm (i . e . IDIF−FFT)

5 // wi thout u s i n g readymade i n b u i l t S c i l a b f u n c t i o n s
f o r IDFT/IFFT .

6

7 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
8 //OS windows 10
9 clc;

10 clear;

11 // Let us beg in with the programming . For
under s tand ing , l e t us w r i t e the g i v en

12 // data as

18

13 //X(0) =10;X(1)=−2+2j ,X(2)=−2,X(3)=−2−2 j
14 X0c =10; //X0c means complex c on j u ga t e o f XO
15 X1c=(-2)+((-1) *(2)*(sqrt(-1)));//X1c means complex

c on j u ga t e o f X1
16 X2c=-2; //X2c means complex c on j u ga t e o f X2
17 X3c=(-2) -((-1)*(2)*(sqrt(-1)));//X3c means complex

c on j u ga t e o f X3
18 disp(X0c , ’X∗ (0)= ’)
19 disp(X1c , ’X∗ (1)= ’)
20 disp(X2c , ’X∗ (2)= ’)
21 disp(X3c , ’X∗ (3)= ’)
22 x0_star =((X3c+X1c)*(1)+(X2c+X0c)*(1))*(1/4);//

Computing x ∗ (0)
23 disp(x0_star , ’ x ∗ (0)= ’)
24 x2_star =((((X3c+X1c)*(1)) -((X2c+X0c)*(1)))*(-1))

*(1/4);//Computing x ∗ (2)
25 disp(x2_star , ’ x ∗ (2)= ’)
26 x1_star =((X3c -X1c)*(-1)*(-sqrt(-1))+(X2c -X0c)*(-1))

*(1/4);//Computing x ∗ (1)
27 disp(x1_star , ’ x ∗ (1)= ’)
28 //Computing x ∗ (3)
29 x3_star =((((X3c -X1c)*(-1)*(-sqrt(-1))-(X2c -X0c)*(-1)

))*(-1))*(1/4);

30 disp(x3_star , ’ x ∗ (3)= ’)
31 disp({,x0_star ,x1_star ,x2_star ,x3_star ,}, ’ x ∗ (n)= ’)
32 //The computed va lu e i s x ∗ (n) . But we need x (n) as

f i n a l output .
33 //We w i l l s e p a r a t e r e a l pa r t o f x ∗ (n)
34 //We w i l l s e p a r a t e imag ina ry pa r t o f x ∗ (n) and take

i t s complex c on j u ga t e by
35 // mu l t i p l y i n g by a f a c t o r o f (−1)
36 x0_star_real=real(x0_star);

37 x0_star_conj =(-1)*(imag(x0_star));

38 x1_star_real=real(x1_star);

39 x1_star_conj =(-1)*(imag(x1_star));

40 x2_star_real=real(x2_star);

41 x2_star_conj =(-1)*(imag(x2_star));

42 x3_star_real=real(x3_star);

19

43 x3_star_conj =(-1)*(imag(x3_star));

44 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

45 // c on j u ga t e i s taken to g e t xx (0) , (1) , x (2) and x (3)
46 x0=x0_star_real+x0_star_conj;//Computing x (0)
47 x1=x1_star_real+x1_star_conj;//Computing x (1)
48 x2=x2_star_real+x2_star_conj;//Computing x (2)
49 x3=x3_star_real+x3_star_conj;//Computing x (3)
50 disp({,x0,x1,x2 ,x3 ,}, ’ So , the IDFT o f X(k) u s i n g

I n v e r s e Decimation−in−Frequency Fast Fou r i e r
Transform (IDIF−FFT) i s x (n)= ’)

Scilab code Solution 6.1 Experiment Number 6 extra solution

1 //AIM: Four po i n t IDIF−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2 // (This i s an e x t r a s o l u t i o n)
3

4 //Computing f o u r po i n t IDFT f o r X(k)={10,−2+2 j
,−2,−2−2 j } u s i n g I n v e r s e

5 // Dec imat ion i n Frequency−Fast Fou r i e r t r an s f o rm (i .
e . IDIF−FFT)

6 // wi thout u s i n g readymade i n b u i l t S c i l a b f u n c t i o n s
f o r IDFT/IFFT .

7

8 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
9 //OS windows 10
10 clc;

11 clear;

12 // Let us beg in with the programming . For
under s tand ing , l e t us w r i t e the g i v en

13 // data as
14 //X(0) =10;X(1)=−2+2j ,X(2)=−2,X(3)=−2−2 j
15 X0_conj =10; // X0 conj means complex c on j u ga t e o f X(O)
16 X1_conj =(-2)+((-1) *(2)*(sqrt(-1)));// X1 conj means

20

complex c on j u ga t e o f X(1)
17 X2_conj =-2; // X2 conj means complex c on j u ga t e o f X(2)
18 X3_conj =(-2) -((-1)*(2)*(sqrt(-1)));// X3 conj means

complex c on j u ga t e o f X(3)
19 disp(X0_conj , ’X∗ (0)= ’)
20 disp(X1_conj , ’X∗ (1)= ’)
21 disp(X2_conj , ’X∗ (2)= ’)
22 disp(X3_conj , ’X∗ (3)= ’)
23 // Stage I computat ion
24 X0a=X2_conj+X0_conj;//Computing Stage−I output at

l i n e 1
25 disp(X0a , ’ Stage−I output at l i n e 1 ’)
26 X1b=(X3_conj+X1_conj);//Computing Stage−I output at

l i n e 2
27 disp(X1b , ’ Stage−I output at l i n e 2 ’)
28 X2c=(X2_conj -X0_conj)*(-1);//Computing Stage−I

output at l i n e 3
29 disp(X2c , ’ Stage−I output at l i n e 3 ’)
30 X3d=(X3_conj -X1_conj)*(-1);//Computing Stage−I

output at l i n e 4
31 disp(X3d , ’ Stage−I output at l i n e 4 ’)
32 // Stage I I computat ion
33 X3d1=X3d*(-sqrt(-1));// Mu l t i p l y by (− j) i n the l a s t

l i n e
34 disp(X3d1 , ’ Stage−I I i nput at the f o u r t h l i n e ’)
35 x0_conj=X1b+X0a;//Computing s tage−I I output va l u e at

l i n e 1
36 disp(x0_conj , ’ The s tage−I I output va l u e at l i n e 1= ’)
37 x2_conj =(X1b -X0a)*(-1);//Computing s tage−I I output

va lu e at l i n e 2
38 disp(x2_conj , ’ The s tage−I I output va l u e at l i n e 2= ’)
39 x1_conj=X3d1+X2c;//Computing s tage−I I output va l u e

at l i n e 3
40 disp(x1_conj , ’ The s tage−I I output va l u e at l i n e 3= ’)
41 x3_conj =(X3d1 -X2c)*(-1);//Computing s tage−I I output

va lu e at l i n e 4
42 disp(x3_conj , ’ The s tage−I I output va l u e at l i n e 4= ’)
43 //Now we w i l l mu l t i p l y s tage−I I output v a l u e s

21

i n d i v i d u a l l y with a f a c t o r o f
44 // (1/N) . Here N=4 ,So we w i l l mu l t i p l y by (1/4)
45 x0_conj_final =(1/4) *(x0_conj)

46 disp(x0_conj_final , ’ x ∗ (0)= ’)
47 x2_conj_final =(1/4) *(x2_conj)

48 disp(x2_conj_final , ’ x ∗ (2)= ’)
49 x1_conj_final =(1/4) *(x1_conj)

50 disp(x1_conj_final , ’ x ∗ (1)= ’)
51 x3_conj_final =(1/4) *(x3_conj)

52 disp(x3_conj_final , ’ x ∗ (3)= ’)
53 disp({,x0_conj_final ,x1_conj_final ,x2_conj_final ,

x3_conj_final ,}, ’ So , the IDFT o f X(k) u s i n g
I n v e r s e Decimation−in−Frequency Fast Fou r i e r
Transform (IDIF−FFT) i s x (n)= ’)

22

Experiment: 7

Derive The Six Point Twiddle
Factor Matrix [w6] Useful For
Dft Computation

Scilab code Solution 7.0 Experiment Number 7

1 //AIM: Der ive the s i x po i n t tw i dd l e f a c t o r matr ix [W6
] u s e f u l f o r DFT computat ion

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 //Computing the tw i dd l e f a c t o r v a l u e s f o r W60,W61,
W62,W63,W64,W65 :

7 W60=int(cos(0))-(sqrt(-1)*int(sin(0)));

8 W61=cos ((2* %pi *1)/6) -(sqrt(-1))*sin ((2* %pi*1) /6);

9 W62=(cos ((2* %pi *2)/6)) -(sqrt(-1))*sin ((2* %pi *2) /6);

10 W63=cos ((2* %pi *3)/6)-int((sqrt(-1))*sin ((2* %pi *3)/6)

);

11 W64=cos ((2* %pi *4)/6) -(sqrt(-1))*(sin ((2* %pi*4) /6));

12 W65=cos ((2* %pi *5)/6) -(sqrt(-1))*sin ((2* %pi*5) /6);

13

14 disp(W60 , ’W60= ’)

23

15 disp(W61 , ’W61= ’)
16 disp(W62 , ’W62= ’)
17 disp(W63 , ’W63= ’)
18 disp(W64 , ’W64= ’)
19 disp(W65 , ’W65= ’)
20

21 //W60=W612=W618=W624=W630=W636 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

22 W66=W60;

23 W612=W66;

24 W618=W612;

25 W624=W618;

26 W630=W624;

27 W636=W630;

28

29 //W61=W67=W613=W619=W625 // Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

30 W67=W61;

31 W613=W67;

32 W619=W613;

33 W625=W619;

34

35 //W62=W68=W614=W620 // Cy c l i c p r op e r t y o f tw i dd l e
f a c t o r

36 W68=W62;

37 W614=W68;

38 W620=W614;

39

40 //W63=W69=W615=W621 // Cy c l i c p r op e r t y o f tw i dd l e
f a c t o r

41 W69=W63;

42 W615=W69;

43 W621=W615;

44

45 //W64=W610=W616=W622 // Cy c l i c p r op e r t y o f tw i dd l e
f a c t o r

46 W610=W64;

47 W616=W610;

24

48 W622=W616;

49

50 //W65=W613=W621=W629 // Cy c l i c p r op e r t y o f tw i dd l e
f a c t o r

51 W613=W65;

52 W621=W613;

53 W629=W621;

54

55 W6= [W60 W60 W60 W60 W60 W60;W60 W61 W62 W63 W64 W65

;W60 W62 W64 W66 W68 W610;W60 W63 W66 W69 W612

W615;W60 W64 W68 W612 W616 W620;W60 W65 W610 W615

W620 W625];

56 // D i s p l a y i n g the W6 matr ix :
57 disp(W6, ’ [W6]= ’)

25

Experiment: 8

Derive The Eight Point
Twiddle Factor Matrix For
Computing Inverse Dft

Scilab code Solution 8.0 Experiment Number 8

1 //AIM: Der ive the 8 po i n t tw i dd l e f a c t o r matr ix f o r
computing i n v e r s e DFT

2

3 // i . e . W8∗ matr ix d e r i v a t i o n
4

5 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
6 //OS windows 10
7 clc;

8 clear;

9 //Computing the tw i dd l e f a c t o r v a l u e s f o r W80,W81,
W82,W83,W84,W85,W86,W87 :

10 W80=int(cos(0))+(sqrt(-1)*int(sin(0)));

11 W81=cos ((2* %pi *1)/8)+(sqrt(-1))*sin ((2* %pi*1) /8);

12 W82=int(cos ((2* %pi*2)/8))+(sqrt(-1))*sin ((2* %pi *2)

/8);

13 W83=cos ((2* %pi *3)/8)+(sqrt(-1))*sin ((2* %pi*3) /8);

14 W84=cos ((2* %pi *4)/8)+(sqrt(-1))*int(sin ((2* %pi *4)/8)

26

);

15 W85=cos ((2* %pi *5)/8)+(sqrt(-1))*sin ((2* %pi*5) /8);

16 W86=int(cos ((2* %pi*6)/8))+(sqrt(-1))*sin ((2* %pi *6)

/8);

17 W87=cos ((2* %pi *7)/8)+(sqrt(-1))*sin ((2* %pi*7) /8);

18

19 disp(W80 , ’W80= ’)
20 disp(W81 , ’W81= ’)
21 disp(W82 , ’W82= ’)
22 disp(W83 , ’W83= ’)
23 disp(W84 , ’W84= ’)
24 disp(W85 , ’W85= ’)
25 disp(W86 , ’W86= ’)
26 disp(W87 , ’W87= ’)
27

28 //W80=W88=W816=W824=W832=W840=W848 ; / / Cy c l i c p r op e r t y
o f tw i dd l e f a c t o r

29 W88=W80;

30 W816=W88;

31 W824=W816;

32 W832=W824;

33 W840=W832;

34 W848=W840;

35

36 //W81=W89=W817=W825=W833=W841=W849 ; / / Cy c l i c p r op e r t y
o f tw i dd l e f a c t o r

37 W89=W81;

38 W817=W89;

39 W825=W817;

40 W833=W825;

41 W841=W833;

42 W849=W841;

43

44 //W82=W810=W818=W826=W834=W842 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

45 W810=W82;

46 W818=W810;

47 W826=W818;

27

48 W834=W826;

49 W842=W834;

50

51 //W83=W811=W819=W827=W835=W843 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

52 W811=W83;

53 W819=W811;

54 W827=W819;

55 W835=W827;

56 W843=W835;

57

58 //W84=W812=W820=W828=W836=W844 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

59 W812=W84;

60 W820=W812;

61 W828=W820;

62 W836=W828;

63 W844=W836;

64

65 //W85=W813=W821=W829=W837=W845 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

66 W813=W85;

67 W821=W813;

68 W829=W821;

69 W837=W829;

70 W845=W837;

71

72 //W86=W814=W822=W830=W838=W846 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

73 W814=W86;

74 W822=W814;

75 W830=W822;

76 W838=W830;

77 W846=W838;

78

79 //W87=W815=W823=W831=W839=W847 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

80 W815=W87;

28

81 W823=W815;

82 W831=W823;

83 W839=W831;

84 W847=W839;

85

86 W8_star= [W80 W80 W80 W80 W80 W80 W80 W80;W80 W81

W82 W83 W84 W85 W86 W87;W80 W82 W84 W86 W88 W810

W812 W814;W80 W83 W86 W89 W812 W815 W818 W821;W80

W84 W88 W812 W816 W820 W824 W828;W80 W85 W810

W815 W820 W825 W830 W835;W80 W86 W812 W818 W824

W830 W836 W842;W80 W87 W814 W821 W828 W835 W842

W849];

87

88 disp(W8_star , ’ [W8∗]= ’)

29

Experiment: 9

Filtering Of Long Data
Sequences

Scilab code Solution 9.0 Experiment Number 9

1 //AIM: F i l t e r i n g o f l ong data s e qu en c e s
2

3 // Overlap−add method u s i n g FFT−IFFT t e chn i qu e (
w i thout u s i n g i n b u i l t S c i l a b

4 // f u n c t i o n s f o r DFT/IDFT or FFT/IFFT)
5

6 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
7 //OS windows 10
8 clc;

9 clear;

10 //Given tha t x (n) ={1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} and h (n) ={1 ,2}
11 // So ln :
12 xn =[1 2 3 4 5 6 7 8]; //Nx=8
13 hn =[1 2];

14 // S i n c e Nx=8 ,Nh=2 and we know Nx=m∗Nh(so 8=m∗2)
g i v i n g m=4; and so x (n) has been

15 // p a r t i t i o n e d i n t o 4 b l o c k s o f l e n g t h Nh=2
16 x0n =[1 2];

17 x1n =[3 4];

30

18 x2n =[5 6];

19 x3n =[7 8];

20 // Length o f each p a r t i t i o n e d input i . e x0n , x1n , x2n
and x3n i s 2(i . e . L=2)

21 //Here l e n g t h o f impu l s e r e s p on s e a r r ay h (n) i s 2 (i
. e . M=2) or Nh=2

22 //Hence , we pad the p a r t i t i o n e d s equence and h (n)
with z e r o s such tha t the l e n g t h

23 // o f each one becomes ’ a t l e a s t ’ L+M−1 i . e . 3
24 //But s i n c e we know 4 po i n t DFT matrix , we can pad an

a d d i t i o n a l z e r o & make the
25 // l e n g t h o f each s equence =4
26 x0n_z =[1 2 0 0]; // x0n z r e p r e s e n t s z e r o pad i s done

to x0n
27 x1n_z =[3 4 0 0]; // x1n z r e p r e s e n t s z e r o pad i s done

to x1n
28 x2n_z =[5 6 0 0]; // x2n z r e p r e s e n t s z e r o pad i s done

to x2n
29 x3n_z =[7 8 0 0]; // x3n z r e p r e s e n t s z e r o pad i s done

to x3n
30 hn_z =[1 2 0 0]; // hn z r e p r e s e n t s z e r o pad i s done to

hn
31

32 //Computing FFT f o r x0n z
33 x0n_z_0 =1; // x0n z 0 r e p r e s e n t s the 0 th sample o f

x0n z
34 x0n_z_1 =2; // x0n z 1 r e p r e s e n t s the 1 s t sample o f

x0n z
35 x0n_z_2 =0; // x0n z 2 r e p r e s e n t s the 2nd sample o f

x0n z
36 x0n_z_3 =0; // x0n z 3 r e p r e s e n t s the 3 rd sample o f

x0n z
37 X0_0=(x0n_z_2+x0n_z_0)*(1)+(x0n_z_3+x0n_z_1)*(1)

38 X0_1=(x0n_z_3 -x0n_z_1)*(-1)*(-sqrt(-1))+(x0n_z_2 -

x0n_z_0)*(-1);

39 X0_2 =((x0n_z_3+x0n_z_1)*(1) -(x0n_z_2+x0n_z_0)*(1))

*(-1);

40 X0_3 =((x0n_z_3 -x0n_z_1)*(-1)*(-sqrt(-1)) -(x0n_z_2 -

31

x0n_z_0)*(-1))*(-1);

41 disp({,X0_0 ,X0_1 ,X0_2 ,X0_3 ,}, ’ So , the DFT o f x0 (n)
u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s X0(k)= ’)

42

43 //Computing FFT f o r x1n z
44 x1n_z_0 =3; // x1n z 0 r e p r e s e n t s the 0 th sample o f

x1n z
45 x1n_z_1 =4; // x1n z 1 r e p r e s e n t s the 1 s t sample o f

x1n z
46 x1n_z_2 =0; // x1n z 2 r e p r e s e n t s the 2nd sample o f

x1n z
47 x1n_z_3 =0; // x1n z 3 r e p r e s e n t s the 3 rd sample o f

x1n z
48 X1_0=(x1n_z_2+x1n_z_0)*(1)+(x1n_z_3+x1n_z_1)*(1)

49 X1_1=(x1n_z_3 -x1n_z_1)*(-1)*(-sqrt(-1))+(x1n_z_2 -

x1n_z_0)*(-1);

50 X1_2 =((x1n_z_3+x1n_z_1)*(1) -(x1n_z_2+x1n_z_0)*(1))

*(-1);

51 X1_3 =((x1n_z_3 -x1n_z_1)*(-1)*(-sqrt(-1)) -(x1n_z_2 -

x1n_z_0)*(-1))*(-1);

52 disp({,X1_0 ,X1_1 ,X1_2 ,X1_3 ,}, ’ So , the DFT o f x1 (n)
u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s X1(k)= ’)

53

54 //Computing FFT f o r x2n z
55 x2n_z_0 =5; // x2n z 0 r e p r e s e n t s the 0 th sample o f

x2n z
56 x2n_z_1 =6; // x2n z 1 r e p r e s e n t s the 1 s t sample o f

x2n z
57 x2n_z_2 =0; // x2n z 2 r e p r e s e n t s the 2nd sample o f

x2n z
58 x2n_z_3 =0; // x2n z 3 r e p r e s e n t s the 3 rd sample o f

x2n z
59 X2_0=(x2n_z_2+x2n_z_0)*(1)+(x2n_z_3+x2n_z_1)*(1)

60 X2_1=(x2n_z_3 -x2n_z_1)*(-1)*(-sqrt(-1))+(x2n_z_2 -

x2n_z_0)*(-1);

61 X2_2 =((x2n_z_3+x2n_z_1)*(1) -(x2n_z_2+x2n_z_0)*(1))

32

*(-1);

62 X2_3 =((x2n_z_3 -x2n_z_1)*(-1)*(-sqrt(-1)) -(x2n_z_2 -

x2n_z_0)*(-1))*(-1);

63 disp({,X2_0 ,X2_1 ,X2_2 ,X2_3 ,}, ’ So , the DFT o f x2 (n)
u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s X2(k)= ’)

64

65 //Computing FFT f o r x3n z
66 x3n_z_0 =7; // x3n z 0 r e p r e s e n t s the 0 th sample o f

x3n z
67 x3n_z_1 =8; // x3n z 1 r e p r e s e n t s the 1 s t sample o f

x3n z
68 x3n_z_2 =0; // x3n z 2 r e p r e s e n t s the 2nd sample o f

x3n z
69 x3n_z_3 =0; // x3n z 3 r e p r e s e n t s the 3 rd sample o f

x3n z
70 X3_0=(x3n_z_2+x3n_z_0)*(1)+(x3n_z_3+x3n_z_1)*(1)

71 X3_1=(x3n_z_3 -x3n_z_1)*(-1)*(-sqrt(-1))+(x3n_z_2 -

x3n_z_0)*(-1);

72 X3_2 =((x3n_z_3+x3n_z_1)*(1) -(x3n_z_2+x3n_z_0)*(1))

*(-1);

73 X3_3 =((x3n_z_3 -x3n_z_1)*(-1)*(-sqrt(-1)) -(x3n_z_2 -

x3n_z_0)*(-1))*(-1);

74 disp({,X3_0 ,X3_1 ,X3_2 ,X3_3 ,}, ’ So , the DFT o f x3 (n)
u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s X3(k)= ’)

75

76 //Computing FFT f o r hn z
77 hn_z_0 =1; // hn z 0 r e p r e s e n t s the 0 th sample o f hn z
78 hn_z_1 =2; // hn z 1 r e p r e s e n t s the 1 s t sample o f hn z
79 hn_z_2 =0; // hn z 2 r e p r e s e n t s the 2nd sample o f hn z
80 hn_z_3 =0; // hn z 3 r e p r e s e n t s the 3 rd sample o f hn z
81 Hk_0=(hn_z_2+hn_z_0)*(1)+(hn_z_3+hn_z_1)*(1)

82 Hk_1=(hn_z_3 -hn_z_1)*(-1)*(-sqrt(-1))+(hn_z_2 -hn_z_0

)*(-1);

83 Hk_2 =((hn_z_3+hn_z_1)*(1) -(hn_z_2+hn_z_0)*(1))*(-1);

84 Hk_3 =((hn_z_3 -hn_z_1)*(-1)*(-sqrt(-1))-(hn_z_2 -

hn_z_0)*(-1))*(-1);

33

85 disp({,Hk_0 ,Hk_1 ,Hk_2 ,Hk_3 ,}, ’ So , the DFT o f h (n)
u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s H(k)= ’)

86

87 Y0k0=(X0_0).*(Hk_0);

88 Y0k1=(X0_1).*(Hk_1);

89 Y0k2=(X0_2).*(Hk_2);

90 Y0k3=(X0_3).*(Hk_3);

91 Y0k=[Y0k0 Y0k1 Y0k2 Y0k3];

92 disp(Y0k , ’Y0(k)= ’)
93

94 //Computing IDFT o f Y0k u s i n g IDIT−FFT :
95

96 Y0k0_0c=real(Y0k0)-(sqrt(-1))*imag(Y0k0);//Y0K0 0c
means complex c on j u ga t e o f Y0k0

97 Y0k0_1c=real(Y0k1)-(sqrt(-1))*imag(Y0k1);//Y0K0 1c
means complex c on j u ga t e o f Y0k1

98 Y0k0_2c=real(Y0k2)-(sqrt(-1))*imag(Y0k2);//Y0K0 2c
means complex c on j u ga t e o f Y0k2

99 Y0k0_3c=real(Y0k3)-(sqrt(-1))*imag(Y0k3);//Y0K0 3c
means complex c on j u ga t e o f Y0k3

100

101 a0=(((Y0k0_3c+Y0k0_1c)*(1))+((Y0k0_2c+Y0k0_0c)*(1)))

*(1/4);

102 a1=(((Y0k0_3c -Y0k0_1c)*(-1)*(-sqrt(-1)))+(Y0k0_2c -

Y0k0_0c)*(-1))*(1/4);

103 a2=(((Y0k0_3c+Y0k0_1c)*(1) -(Y0k0_2c+Y0k0_0c))*(-1))

*(1/4);

104 a3=((((Y0k0_3c -Y0k0_1c)*(-1)*(-sqrt(-1))) -((Y0k0_2c -

Y0k0_0c)*(-1)))*(-1))*(1/4);

105

106 a0_real=real(a0);

107 a0_conj =(-1)*(imag(a0));

108 a1_real=real(a1);

109 a1_conj =(-1)*(imag(a1));

110 a2_real=real(a2);

111 a2_conj =(-1)*(imag(a2));

112 a3_real=real(a3);

34

113 a3_conj =(-1)*(imag(a3));

114 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

115 // c on j u ga t e i s taken
116 a0 ’= a0_real+a0_conj

117 a1 ’= a1_real+a1_conj

118 a2 ’= a2_real+a2_conj

119 a3 ’= a3_real+a3_conj

120 a=[a0’,a1’,a2 ’,a3 ’]

121 disp(a, ’ So , the IDFT o f Y0(k) u s i n g I n v e r s e
Decimation−in−Time Fast Fou r i e r Transform (IDIT−
FFT) i s y0 (n)= ’)

122

123 Y1k0=(X1_0).*(Hk_0);

124 Y1k1=(X1_1).*(Hk_1);

125 Y1k2=(X1_2).*(Hk_2);

126 Y1k3=(X1_3).*(Hk_3);

127 Y1k=[Y1k0 Y1k1 Y1k2 Y1k3];

128 disp(Y1k , ’Y1(k)= ’)
129

130 //Computing IDFT o f Y1k u s i n g IDIT−FFT :
131 Y1k0_0c=real(Y1k0)-(sqrt(-1))*imag(Y1k0);//Y1K0 0c

means complex c on j u ga t e o f Y1k0
132 Y1k0_1c=real(Y1k1)-(sqrt(-1))*imag(Y1k1);//Y1K0 1c

means complex c on j u ga t e o f Y1k1
133 Y1k0_2c=real(Y1k2)-(sqrt(-1))*imag(Y1k2);//Y1K0 2c

means complex c on j u ga t e o f Y1k2
134 Y1k0_3c=real(Y1k3)-(sqrt(-1))*imag(Y1k3);//Y1K0 3c

means complex c on j u ga t e o f Y1k3
135

136 b0=(((Y1k0_3c+Y1k0_1c)*(1))+((Y1k0_2c+Y1k0_0c)*(1)))

*(1/4);

137 b1=(((Y1k0_3c -Y1k0_1c)*(-1)*(-sqrt(-1)))+(Y1k0_2c -

Y1k0_0c)*(-1))*(1/4);

138 b2=(((Y1k0_3c+Y1k0_1c)*(1) -(Y1k0_2c+Y1k0_0c))*(-1))

*(1/4);

139 b3=((((Y1k0_3c -Y1k0_1c)*(-1)*(-sqrt(-1))) -((Y1k0_2c -

Y1k0_0c)*(-1)))*(-1))*(1/4);

35

140

141 b0_real=real(b0);

142 b0_conj =(-1)*(imag(b0));

143 b1_real=real(b1);

144 b1_conj =(-1)*(imag(b1));

145 b2_real=real(b2);

146 b2_conj =(-1)*(imag(b2));

147 b3_real=real(b3);

148 b3_conj =(-1)*(imag(b3));

149 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

150 // c on j u ga t e i s taken
151 b0 ’= b0_real+b0_conj

152 b1 ’= b1_real+b1_conj

153 b2 ’= b2_real+b2_conj

154 b=[b0’,b1’,b2 ’,b3 ’]

155 disp(b, ’ So , the IDFT o f Y1(k) u s i n g I n v e r s e
Decimation−in−Time Fast Fou r i e r Transform (IDIT−
FFT) i s y1 (n)= ’)

156

157 Y2k0=(X2_0).*(Hk_0);

158 Y2k1=(X2_1).*(Hk_1);

159 Y2k2=(X2_2).*(Hk_2);

160 Y2k3=(X2_3).*(Hk_3);

161 Y2k=[Y2k0 Y2k1 Y2k2 Y2k3];

162 disp(Y2k , ’Y2(k)= ’)
163

164 //Computing IDFT o f Y2k u s i n g IDIT−FFT :
165 Y2k0_0c=real(Y2k0)-(sqrt(-1))*imag(Y2k0);//Y2K0 0c

means complex c on j u ga t e o f Y2k0
166 Y2k0_1c=real(Y2k1)-(sqrt(-1))*imag(Y2k1);//Y2K0 1c

means complex c on j u ga t e o f Y2k1
167 Y2k0_2c=real(Y2k2)-(sqrt(-1))*imag(Y2k2);//Y2K0 2c

means complex c on j u ga t e o f Y2k2
168 Y2k0_3c=real(Y2k3)-(sqrt(-1))*imag(Y2k3);//Y2K0 3c

means complex c on j u ga t e o f Y2k3
169

170 c0=(((Y2k0_3c+Y2k0_1c)*(1))+((Y2k0_2c+Y2k0_0c)*(1)))

36

*(1/4);

171 c1=(((Y2k0_3c -Y2k0_1c)*(-1)*(-sqrt(-1)))+(Y2k0_2c -

Y2k0_0c)*(-1))*(1/4);

172 c2=(((Y2k0_3c+Y2k0_1c)*(1) -(Y2k0_2c+Y2k0_0c))*(-1))

*(1/4);

173 c3=((((Y2k0_3c -Y2k0_1c)*(-1)*(-sqrt(-1))) -((Y2k0_2c -

Y2k0_0c)*(-1)))*(-1))*(1/4);

174

175 c0_real=real(c0);

176 c0_conj =(-1)*(imag(c0));

177 c1_real=real(b1);

178 c1_conj =(-1)*(imag(c1));

179 c2_real=real(c2);

180 c2_conj =(-1)*(imag(c2));

181 c3_real=real(c3);

182 c3_conj =(-1)*(imag(c3));

183 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

184 // c on j u ga t e i s taken
185 c0 ’= c0_real+c0_conj

186 c1 ’= c1_real+c1_conj

187 c2 ’= c2_real+c2_conj

188 c3 ’= c3_real+c3_conj

189 c=[c0’,c1’,c2 ’,c3 ’]

190 disp(c, ’ So , the IDFT o f Y2(k) u s i n g I n v e r s e
Decimation−in−Time Fast Fou r i e r Transform (IDIT−
FFT) i s y2 (n)= ’)

191

192 Y3k0=(X3_0).*(Hk_0);

193 Y3k1=(X3_1).*(Hk_1);

194 Y3k2=(X3_2).*(Hk_2);

195 Y3k3=(X3_3).*(Hk_3);

196 Y3k=[Y3k0 Y3k1 Y3k2 Y3k3];

197 disp(Y3k , ’Y3(k)= ’)
198

199 //Computing IDFT o f Y3k u s i n g IDIT−FFT :
200 Y3k0_0c=real(Y3k0)-(sqrt(-1))*imag(Y3k0);//Y3K0 0c

means complex c on j u ga t e o f Y3k0

37

201 Y3k0_1c=real(Y3k1)-(sqrt(-1))*imag(Y3k1);//Y3K0 1c
means complex c on j u ga t e o f Y3k1

202 Y3k0_2c=real(Y3k2)-(sqrt(-1))*imag(Y3k2);//Y3K0 2c
means complex c on j u ga t e o f Y3k2

203 Y3k0_3c=real(Y3k3)-(sqrt(-1))*imag(Y3k3);//Y3K0 3c
means complex c on j u ga t e o f Y3k3

204

205 d0=(((Y3k0_3c+Y3k0_1c)*(1))+((Y3k0_2c+Y3k0_0c)*(1)))

*(1/4);

206 d1=(((Y3k0_3c -Y3k0_1c)*(-1)*(-sqrt(-1)))+(Y3k0_2c -

Y3k0_0c)*(-1))*(1/4);

207 d2=(((Y3k0_3c+Y3k0_1c)*(1) -(Y3k0_2c+Y3k0_0c))*(-1))

*(1/4);

208 d3=((((Y3k0_3c -Y3k0_1c)*(-1)*(-sqrt(-1))) -((Y3k0_2c -

Y3k0_0c)*(-1)))*(-1))*(1/4);

209

210 d0_real=real(d0);

211 d0_conj =(-1)*(imag(d0));

212 d1_real=real(d1);

213 d1_conj =(-1)*(imag(d1));

214 d2_real=real(d2);

215 d2_conj =(-1)*(imag(d2));

216 d3_real=real(d3);

217 d3_conj =(-1)*(imag(d3));

218 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

219 // c on j u ga t e i s taken
220 d0 ’= d0_real+d0_conj

221 d1 ’= d1_real+d1_conj

222 d2 ’= d2_real+d2_conj

223 d3 ’= d3_real+d3_conj

224 d=[d0’,d1’,d2 ’,d3 ’]

225 disp(d, ’ So , the IDFT o f Y3(k) u s i n g I n v e r s e
Decimation−in−Time Fast Fou r i e r Transform (IDIT−
FFT) i s y3 (n)= ’)

226 w=[a 0 0 0 0 0 0];

227 x=[0 0 b 0 0 0 0];

228 y=[0 0 0 0 c 0 0];

38

229 z=[0 0 0 0 0 0 d];

230 disp(z,y,x,w, ’ A f t e r ov e r l app ing , the s e qu en c e s w i l l
be s e en as f o l l o w s : ’)

231 yn=w+x+y+z;

232 disp(yn, ’ The output : y (n)= ’)

39

Experiment: 10

Implement Impulse Invariant
Method

Scilab code Solution 10.0 Experiment Number 10

1 //AIM: Implement Impul se I n v a r i a n t method
2

3 // Find out H(z) u s i n g impu l s e i n v a r i a n c e s method at
5Hz sampl ing f r e qu en cy

4 // from H(s) where H(s) =1/(s+1) (s+2)
5

6 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
7 //OS windows 10
8 clc;

9 clear;

10 s=%s;

11 s2=-2;

12 s1=-1;

13 d1=(s-s1);

14 p2=(s-s2);

15 if (s1) then // When po l e=−1
16 s1=-1;

17 s2=-2;

18 s=s1;

40

19 d2=(s-s2);

20 num1 =1/d2; // Value o f A1
21 h1=syslin(’ c ’ , num1/d1)

22 end

23 disp(h1)

24 disp(num1 , ’ v a l u e o f A1= ’)
25 if (s2) then // When po l e=−2
26 s1=-1;

27 s2=-2;

28 s=s2;

29 p1=(s-s1);

30 num2 =1/p1; // Value o f A2
31 h2=syslin(’ c ’ , num2/p2)

32 end

33 disp(h2)

34 disp(num2 , ’ Value o f A2= ’)
35 Hs=(h1)+(h2);

36 disp(Hs, ’ T r an s f e r f u n c t i o n o f ana l og f i l t e r H(s)= ’)
37 //Obtain the Z−t r an s f o rm us i ng impu l s e i n v a r i a n c e

t r a n s f o rma t i o n equa t i on
38 // 1/(s−pk)=1/[1− exp (pk∗Ts) ∗Zˆ(−1)]
39 Fs=5;

40 Ts=1/Fs;

41 disp(’ s e c ’ ,Ts , ’ Sampl ing t ime Ts= ’)
42 //we have p o l e s at s1=−1 and s2=−2
43 Z=poly(0,”Z”)
44 // 1/(s+1)=a ;We c o n s i d e r
45 a=num1/(1-exp(s1*(Ts))*Z^(-1));

46 // 1/(s+2)=b ;We c o n s i d e r
47 b=num2/(1-exp(s2*(Ts))*Z^(-1));

48 disp(a, ’ 1/ s+1= ’)
49 disp(b, ’ 1/ s+2= ’)
50 //The Tran s f e r f u n c t i o n o f d i g i t a l f i l t e r i s g i v en

by ,
51 //H(Z)= (k=1)ˆN(Ak/(1− e ˆ(pk∗Ts) ∗Zˆ(−1))
52 //H(Z)=A1/1−exp (p1∗Ts) ∗Zˆ(−1)+A2/1−exp (p1∗Ts) ∗Zˆ(−1)
53 Hz=(a+b);

54 disp(Hz, ’ The r e q u i r e d t r a n s f e r f u n c t i o n f o r d i g i t a l

41

I IR f i l t e r H(Z)= ’)

42

Experiment: 11

To Design Butterworth Filter
With Minimum Readymade
Scilab Functions

Scilab code Solution 11.0 Experiment Number 11

1 //AIM: To d e s i g n Butte rworth f i l t e r with minimum
readymade S c i l a b f u n c t i o n s

2

3 //To compute the o rd e r and the p o l e s o f Butte rworth
low pas s f i l t e r u s i n g

4 // B i l i n e a r t r a n s f o rma t i o n (ASSUME T=1SEC) ;
5 // At t enua t i on i n passband =1.93dB
6 // At t enua t i on i n stopband =13.97dB
7 // Passband edge f r e qu en cy =0.2
8 // Stopbandband edge f r e qu en cy =0.6
9

10 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
11 //OS windows 10
12 clc;

13 clear;

14 s=poly(0,” s ”)
15 T=1;

43

16 Ap =1.93; // i n dB
17 As =13.97; // i n dB
18 wp =0.2*(%pi)

19 ws =0.6*(%pi)

20 ohmp =2/T*(tan(wp/2))

21 ohms =2/T*(tan(ws/2))

22 //ORDER CALCULATION :
23 N=(0.5) *(log ((((10^(0.1* As)) -1) /((10^(0.1* Ap)) -1))))

/(log(ohms/ohmp))

24

25 Nr=int (N)

26 x=N-int(N)

27 if(x>0)

28 Nr=Nr+1

29 ohmc=(ohmp /(10^(0.1* Ap) -1)^(1/(2* Nr)))

30 // Ca l c u l a t i o n o f p o l e s
31 i=0:1:Nr -1;

32 pi_plus=ohmc*exp(%i*(Nr+2*i+1)*(%pi)/(2*Nr))

33 pi_minus=-ohmc*exp(%i *(2+2.*i+1)*(%pi)/(2*Nr))

34 disp(wp, ’wp= ’)
35 disp(ws, ’ ws= ’)
36 disp(ohmp , ’ ohmp= ’)
37 disp(ohms , ’ ohms= ’)
38 disp(N, ’N= ’)
39 disp(Nr, ’ Roundof f va l u e o f N now denoted as Nr = ’)
40 disp(ohmc , ’ Cu t o f f f r e qu en cy : ohmc= ’)
41 disp(’ D i s p l a y i n g the p o l e s ’)
42 disp(pi_plus , ’ p i p l u s= ’)
43 disp(pi_minus , ’ p i m inus= ’)
44 h2=zeros (1,2)

45 h=ohmc/(s-(-0.53 -0.53*%i))

46 h1=ohmc/(s -(-0.53+0.53* %i))

47 h2=h*h1;

48 disp(h,h1, ’Now the ana l og t r a n s f e r f u n c t i o n H(s) i s
the m u l t i p l i c a t i o n o f the f o l l o w i n g two terms : ’)
;

49 disp(h2, ’ A f t e r mu l t i p l i c a t i o n ,H(s)= ’)
50 g=numer(h2);

44

51 disp(g, ’ Numerator o f the ana l og t r a n s f e r f u n c t i o n= ’)
52 // Obta in ing H(z) u s i n g B i l i n e a r Trans f o rmat i on

Method :
53 z=poly(0,” z ”)
54 s=(2/T)*((z-1)/(z+1));// B i l i n e a r Trans f o rmat i on

Method
55 disp(’ Type resume in Conso l e ’)
56 pause

57 a=0.5618 +1.06*s+s^2;

58 b=(1/a)

59 c=0.5645360*b;

60 disp(c, ’ The d i g i t a l t r a n s f e r f u n c t i o n H(z)= ’)

45

Experiment: 12

To Design Chebyshev Filter
With Minimum Readymade
Scilab Functions.

Scilab code Solution 12.0 Experiment Number 12

1 //AIM: To d e s i g n Chebyshev f i l t e r with minimum
readymade S c i l a b f u n c t i o n s

2

3 // Des ign o f low pas s 1 rad / s e c bandwidth Chebyshev
f i l t e r

4 // Accep tab l e passband r i p p l e=2 db
5 // cut o f f r ad i an f r e qu en cy 1 r ad i an / s e c
6 // s top band a t t e nu a t i o n o f 20db or g r e a t e r beyond

1 . 3 r ad i an / s e c
7

8 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
9 //OS windows 10
10 clc;

11 clear;

12 //Given cut−o f f f r e qu en cy i s 1 rad / s e c . This means
tha t i t i s a no rma l i z ed low

13 // pas s Chebyshev f i l t e r

46

14 fc=1; // from the above qu e s t i o n
15 Ap=2; // from the above qu e s t i o n
16 As=20; // from the above qu e s t i o n
17 ohms =1.3; // from the above qu e s t i o n
18 ohmp =1; // I t i s a no rma l i z ed f i l t e r . Hence the va lu e

i s 1 rad / s e c
19

20 // St ep s f o r c a l c u l a t i o n o f
21 a=(0.1*2)

22 b=10^a

23 c=b-1

24 episelon=c^(1/2)

25 disp(episelon ,” =”)
26

27 // St ep s f o r c a l c u l a t i o n o f o rd e r
28 d=(-20)*((log(episelon)/log (10)))

29 e=(20) *(log(ohms)/log (10))

30 f=6+e

31 g=26+d

32 N=g/f

33 Nr=int (N)

34 x=N-int(N)

35 if(x>0)

36 Nr=Nr+1

37 //N=(((−20) ∗ l o g (e p i s e l o n))+6+20) /(6+20∗(l o g (ohms)))
38 D=-20; // g i v en i n db
39 //N=−(20∗ l o g 10 (e p i s e l o n)) −6(N−1)−(20∗ l o g (ohms))
40 h1=((episelon)^2)

41 h2=1+h1

42 h3=h2 ^(1/2)

43 h4=h3+1

44 g=(episelon)

45 h5=h4/g

46 beta=(h5)^(1/Nr)

47 disp(N,”N=”)
48 disp(Nr,”The round−o f f v a l u e o f N(now c a l l e d as Nr)=

”)
49 disp(beta ,” =”)

47

50

51 // f o r the d e t e rm ina t i o n o f p o l e s we have
52 r=(ohmp)*(((beta ^2) -1)/(2* beta))

53 disp(r,”The minor a x i s o f the e l l i p s e (r)=”)
54 R=ohmp *((beta ^2+1) /(2* beta))

55 disp(R,”The major a x i s o f the e l l i p s e (R)=”);
56 // t h e t a i =(%pi /2) +((2 i+%pi) /2∗N) // i =0123
57 // f o r i =0
58 theta0 =((%pi /2) +((2*0* %pi+%pi)/(2*4)))

59 disp(theta0 ,” th e t a0=”)
60 // f o r i =1
61 theta1 =((%pi /2) +((2*1* %pi+%pi)/(2*4)))

62 disp(theta1 ,” th e t a1=”)
63 // f o r i =2
64 theta2 =((%pi /2) +((2*2* %pi+%pi)/(2*4)))

65 disp(theta2 ,” th e t a2=”)
66 // f o r i =3
67 theta3 =((%pi /2) +((2*3* %pi+%pi)/(2*4)))

68 disp(theta3 ,” th e t a3=”)
69 // the po l e p o s i t i o n i s g i v en by
70 // sp=r ∗ co s (t h e t a i)+j s i n (t h e t a i)
71 i=0:1:Nr -1

72 //Computing r e a l and imag inary pa r t o f s0 , s1 , s2 , s3
73 h6=((r)*(cos(theta0))) //Computing r e a l pa r t o f s0
74 h7=(%i)*(R)*(sin(theta0)) //Computing imag inary pa r t

o f s0
75 s0=h6+h7; //Combining r e a l and imag inary pa r t o f s0
76 disp(s0,” s0=”)
77 h8=((r)*(cos(theta1))) //Computing r e a l pa r t o f s1
78 h9=(%i)*(R)*(sin(theta1)) //Computing imag inary pa r t

o f s1
79 s1=h8+h9; //Combining r e a l and imag inary pa r t o f s1
80 disp(s1,” s1=”)
81 h10 =((r)*(cos(theta2))) //Computing r e a l pa r t o f s2
82 h11=(%i)*(R)*(sin(theta2)) //Computing imag inary

pa r t o f s2
83 s2=h10+h11; //Combining r e a l and imag inary pa r t o f

s2

48

84 disp(s2,” s2=”)
85 h12 =((r)*(cos(theta3))) //Computing r e a l pa r t o f s3
86 h13=(%i)*(R)*(sin(theta3)) //Computing imag inary

pa r t o f s3
87 s3=h12+h13; //Combining r e a l and imag inary pa r t o f

s13
88 disp(s3,” s3=”)
89

90 // Ca l c u l a t i o n o f t r a n s f e r f u n c t i o n :
91 s=poly(0,” s ”)
92 h=1/((s-(s0))*(s-(s1))*(s-(s2))*(s-(s3)))

93 disp(h,”h=”)
94 disp(’Now type resume and p r e s s e n t e r i n the Conso l e

window ’)
95 pause

96 //Now va lu e o f b0 i s r e q u i r e d which i s no th ing but
the va lu e o f the c on s t an t

97 // term in the denominator o f h (ob ta i n ed by s e e i n g
the c a l c u l a t e d va lu e i n the

98 // c o n s o l e window by i n s e r t i n g a ’ pause ’ i n the
program)

99 b0 =0.2057651;

100 // Also we s e e i n the Conso l e window tha t the rounded
va lu e o f the o rd e r i s 4

101 // and s i n c e 4 i s an even number , so the fo rmu la f o r
c a l c u l a t i o n o f i w i l l be

102 // i=b0 /(s q r t (1+ ˆ2))
103 i=b0/(sqrt (1+(episelon)^2))

104 disp(i, ’ i= ’)
105 Hs=i*h// Ca l c u l a t e d va lu e o f Ha(s)
106 disp(Hs, ’ The r e q u i r e d t r a n s f e r f u n c t i o n Ha(s)= ’) //

D i s p l a y i n g the c a l c u l a t e d va lu e o f the t r a n s f e r
f u n c t i o n

49

Experiment: 13

Designing Two Stage
Decimator

Scilab code Solution 13.0 Experiment Number 13

1 //AIM: To implement a two s t a g e dec imato r f o r the
f o l l o w i n g s p e c i f i c a t i o n s :

2 // Sampl ing r a t e o f the input s i g n a l =20 ,000 Hz
3 //D=100 , Passband=0 to 40Hz , T r a n s i t i o n Band=40 to 50

Hz , Passband r i p p l e =0.02 , Stopband r i p p l e =0.002
4

5 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
6 //OS windows 10
7 clc;

8 clear;

9

10 // Let us c o n s i d e r the combinat ion 25∗4
11 D1=25;

12 D2=4;

13 // such tha t D=D1∗D2
14 F0 =20000; //Fo i s the sampl ing f r e qu en cy (or sampl ing

r a t e) o f the input s i g n a l (g i v en i n the qu e s t i o n)
15 Fp=40; //Fp i s the passband edge f r e qu en cy (g i v en i n

the qu e s t i o n)

50

16 Fstop =50; // Fstop i s the stopband edge f r e qu en cy (
g i v en i n the qu e s t i o n)

17 F1=F0/D1;

18 F2=F1/D2;

19 disp(” Hertz ”,F0 ,”The g i v en va lu e o f F0=”)
20 disp(” Hertz ”,F1 ,”The c a l c u l a t e d va lu e o f F1=”)
21 disp(” Hertz ”,F2 ,”The c a l c u l a t e d va lu e o f F2=”)
22 Dp =0.02;

23 Ds =0.002;

24 // c a l c u l a t i o n s f o r s t a g e I . . .
25 // Step 1 : Passband :0<=F<=Fp tha t means 0<= F<= 40

Hertz
26 // Step 2 : Stopband : Fi−Fstop<=F<=F(i −1) /2
27 //Here i=1 f o r Stage−I
28 LROS1=F1-Fstop; //Here , LROS1=Lowest l i m i t o f

stopband f o r Stage−I
29 HROS1=F0/2; //Here , HROS1=Highe s t l i m i t o f stopband

f o r Stage−I
30 disp(” Hertz ”,LROS1 ,”The l owe s t l i m i t o f stopband (f o r

Stage−I) =”)
31 disp(” Hertz ”,HROS1 ,”The h i g h e s t l i m i t o f stopband (

f o r Stage−I) =”)
32 disp(” Hertz ”,HROS1 ,”<=F<=”,” Hertz ”,LROS1 ,”So the

range o f stopband f o r Stage I i s : ” ,)
33 Tmax1=LROS1;

34 Tmin1=Fp;

35 DF1=(Tmax1 -Tmin1)/F0

36 Dp1=(Dp/2);

37 Ds1=Ds;

38 disp(’ Hertz ’ ,DF1 ,”The c a l c u l a t e d va lu e o f F1 =”)
39 disp(Dp1 ,”The c a l c u l a t e d va lu e o f p1 =”)
40 disp(Ds1 ,”The va lu e o f s1 = s =”)
41 N1=(((-10* log10(Dp1*Ds1) -13) /(14.6* DF1))+1); //

Computing the f i l t e r l e n g t h (N1) o f Stage−I
42 disp(N1,” F i l t e r l eng th , N1=”)
43 NR1=int(N1);// Ex t r a c t i n g on ly the i n t e g e r pa r t from

N1
44 x1=N1-int(N1);// x1 i s the dec ima l pa r t o f o v e r a l l N1

51

45 if (x1 >0) // I f the dec ima l pa r t i s g r e a t e r than z e r o
46 NR1=NR1+1 //Then inc r ement the e x t r a c t e d i n t e g e r

pa r t i . e . NR1 by 1 to ge t a round−o f f va l u e
o f the l e n g t h o f f i l t e r o f Stage−I

47 disp(NR1 ,” F i l t e r l e n g t h N1(round−o f f v a l u e) now known
as NR1=”)

48 // c a l c u l a t i o n s f o r s tage−I I . . .
49 // Step 1 : Passband :0<=F<=Fp tha t means 0<= F<= 40

Hertz
50 // Step 2 : Stopband : Fi−Fstop<=F<=F(i −1) /2
51 //Here i=2 f o r Stage−I I
52 disp(”−−−−−−−−−−−−−−Now d i s p l a y i n g the v a l u e s f o r

s tage−I I−−−−−−−−−−−−−−”)
53 LROS2=F2-Fstop; //Here , LROS2=Lowest l i m i t o f

stopband f o r Stage−I I
54 HROS2=F1/2 //Here , HROS2=Highe s t l i m i t o f stopband

f o r Stage−I I
55 disp(” Hertz ”,LROS2 ,”The l owe s t l i m i t o f stopband (f o r

Stage−I I) =”)
56 disp(” Hertz ”,HROS2 ,”The h i g h e s t l i m i t o f stopband (

f o r Stage−I I) =”)
57 disp(” Hertz ”,HROS2 ,”<=F<=”,” Hertz ”,LROS2 ,”So the

range o f stopband f o r Stage−I I i s : ” ,)
58 // I f t r a n s i t i o n band i s g i v en i n the que s t i on , then

a lways g i v en t r a n s i t i o n width i s a p p l i c a b l e f o r
the second s t a g e .

59 //Given t r a n s i t i o n width i s 40Hz to 50Hz .
60 // I t i n d i c a t e s tha t f o r t h i s s tage , the stopband

shou ld s t a r t at 50Hz .
61 a=50;

62 disp(” Hertz ”,a,”The new va lu e o f the l owe s t l i m i t o f
stopband (f o r Stage−I I) =”)

63 disp(” Hertz ”,HROS2 ,”The h i g h e s t l i m i t o f stopband i s
re−wr i t t e n (f o r Stage−I I) which i s =”)

64 disp(” Hertz ”,HROS2 ,”<=F<=”,” Hertz ”,a,”So the new
mod i f i e d range o f stopband f o r Stage−I I i s : ” ,)

65 Tmax2 =50;

66 Tmin2=Fp;

52

67 DF2=(Tmax2 -Tmin2)/F1

68 Dp2=(Dp/2);

69 Ds2=Ds;

70 disp(’ Hertz ’ ,DF2 ,”The c a l c u l a t e d va lu e o f F2 =”)
71 disp(Dp2 ,”The c a l c u l a t e d va lu e o f p2 =”)
72 disp(Ds2 ,”The va lu e o f s2 = s1 = s =”)
73 N2=(((-10* log10(Dp2*Ds2) -13) /(14.6* DF2))+1);//

Computing the f i l t e r l e n g t h (N2) o f Stage−I I
74 disp(N2,” F i l t e r l eng th , N2=”)
75 NR2=int(N2);// Ex t r a c t i n g on ly the i n t e g e r pa r t from

N2
76 x2=N2-int(N2);//x i s the dec ima l pa r t o f o v e r a l l N2
77 if (x2 >0) // I f the dec ima l pa r t i s g r e a t e r than z e r o
78 NR2=NR2+1 //Then inc r ement the e x t r a c t e d i n t e g e r

pa r t i . e . NR2 by 1 to ge t a round−o f f va l u e
o f the l e n g t h o f f i l t e r o f Stage−I I

79 disp(NR2 ,” F i n a l f i l t e r l eng th , N2(round−o f f v a l u e) now
known as NR2=”)

80 // Ca l c u l a t i o n o f MPS(Mu l t i p l i c a t i o n s per second) and
TSR(Tota l S t o r ag e r equ i r emen t) . . .

81 //MPS= o f [i =1 to I] (Ni∗Fi)
82 //Here I=Tota l No . o f s t a g e s=2
83 MPS=(NR1*F1)+(NR2*F2);

84 disp(MPS ,”The va lu e o f No . o f MPS(Mu l t i p l i c a t i o n s
per second)=”)

85 //TSR= o f [i =1 to I] (Ni)
86 //Here I=Tota l No . o f s t a g e s=2
87 TSR=NR1+NR2

88 disp(TSR ,”The va lu e o f TSR(Tota l s t o r a g e r equ i r ement
)=”)

53

Experiment: 14

Compute Dft Using Matrix
Approach And Then Using Dft
Properties.

Scilab code Solution 14.0 Experiment Number 14

1 //Compute DFT us i ng matr ix approach & then u s i n g DFT
p r o p e r t i e s .

2 // (i) : x (n) ={1 ,2 ,3 ,4) , f i n d DFT X(k)
3 // (i i) : Us ing r e s u l t s ob ta i n ed i n pa r t (i) & not

o th e rw i s e ,
4 // f i n d DFT o f f o l l o w i n g s e qu en c e s :
5 // x1 (n) ={4 ,1 ,2 ,3}
6 // x2 (n) ={2 ,3 ,4 ,1}
7 // x3 (n) ={3 ,4 ,1 ,2}
8 // x4 (n) ={4 ,6 ,4 ,6}
9 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
10 //OS windows 10
11 clc;

12 clear;

13 // Let us f i r s t d e f i n e the W4 matr ix
14 W4=[1 1 1 1 ;1 -sqrt(-1) -1 sqrt(-1);1 -1 1 -1;1

sqrt(-1) -1 -sqrt(-1)];

54

15 disp(W4, ’W4= ’)
16 //Now l e t us d e f i n e the input s equence
17 xn =[1;2;3;4]; //The input s equence x (n) has been

a r ranged as a column matr ix
18 //DFT i s ob ta i n ed by mu l t i p l y i n g the tw i dd l e matr ix

W4 and the input s equence
19 Xk=W4*xn;

20 disp(Xk, ’DFT : X(k)= ’)
21 disp(’ Type resume in c o n s o l e and p r e s s e n t e r ’)
22 pause

23 X0=10

24 X1= -2+2* sqrt(-1);

25 X2=-2

26 X3=-2-2*sqrt(-1);

27

28 // (i i) : x1 (n) ={4 ,1 ,2 ,3} and x (n) ={1 ,2 ,3 ,4}
29 // x1 (n) i s ob ta i n ed by d e l a y i n g x (n) by 1 p o s i t i o n

which means x1 (n)=x (n−1)
30 // Accord ing to the c i r c u l a r t ime s h i f t p r op e r t y : x (

n− l) g i v e s DFT as X(k) ∗ eˆ(− j ∗2∗%pi∗k∗ l /N)
31 //But l=−1
32 a1=cos(0) -(sqrt(-1)*sin(0));

33 //So , f o r k=0 ,
34 X10=X0.*real(a1)-X0.*(sqrt(-1)*imag(a1))

35 disp(X10 , ’X1 (0)= ’)
36 //So , f o r k=1 ,
37 b1=int(cos(%pi/2)) -(sqrt(-1)*sin(%pi/2))

38 X11=X1*b1;

39 disp(X11 , ’X1 (1)= ’)
40 // For k=2 ,
41 c1=int(cos(%pi))-int((sqrt(-1)*sin(%pi)));

42 X12=X2*c1;

43 disp(X12 , ’X1 (2)= ’)
44 // For k=3 ,
45 d1=int(cos ((3* %pi)/2))-int((sqrt(-1)*sin ((3* %pi)/2))

);

46 X13=X3*d1;

47 disp(X13 , ’X1 (3)= ’)

55

48 disp({,X10 ,X11 ,X12 ,X13 ,}, ’ So , X1(k)= ’)
49

50 // (i i i) : Now moving ahead to f i n d X2(k)
51 // x2 (n) ={2 ,3 ,4 ,1} and x (n) ={1 ,2 ,3 ,4}
52 // x2 (n) i s ob ta i n ed by advanc ing x (n) by 1 p o s i t i o n

which means x2 (n)=x (n+1)
53 // Accord ing to the c i r c u l a r t ime s h i f t p r op e r t y : x (

n− l) g i v e s DFT as X(k) ∗ eˆ(− j ∗2∗%pi∗k∗ l /N)
54 //But l=2
55 a2=cos(0)+(sqrt(-1)*sin(0));

56 //So , f o r k=0 ,
57 X20=X0.*real(a2)-X0.*(sqrt(-1)*imag(a2))

58 disp(X20 , ’X2 (0)= ’)
59 //So , f o r k=1 ,
60 b2=int(cos(%pi/2))+(sqrt(-1)*sin(%pi/2))

61 X21=X1*b2;

62 disp(X21 , ’X2 (1)= ’)
63 // For k=2 ,
64 c2=int(cos(%pi))+int((sqrt(-1)*sin(%pi)));

65 X22=X2*c2;

66 disp(X22 , ’X2 (2)= ’)
67 // For k=3 ,
68 d2=int(cos ((3* %pi)/2))+int((sqrt(-1)*sin ((3* %pi)/2))

);

69 X23=X3*d2;

70 disp(X23 , ’X2 (3)= ’)
71 disp({,X20 ,X21 ,X22 ,X23 ,}, ’ So , X2(k)= ’)
72

73 // (i v) : Now moving ahead to f i n d X3(k)
74 // x3 (n) ={3 ,4 ,1 ,2} and x (n) ={1 ,2 ,3 ,4}
75 // x3 (n) i s ob ta i n ed by s h i f t i n g x (n) by 2 p o s i t i o n s

which means x3 (n)=x [n(+/−) 2]
76 // Accord ing to the c i r c u l a r t ime s h i f t p r op e r t y : x [

n(+/−) 2] g i v e s DFT as X(k) ∗ eˆ(− j ∗2∗%pi∗k∗ l /N)
77 a3=cos(0)+(sqrt(-1)*sin(0));

78 //So , f o r k=0 ,
79 X30=X0.*real(a3)-X0.*(sqrt(-1)*imag(a3))

80 disp(X30 , ’X3 (0)= ’)

56

81 //So , f o r k=1 ,
82 b3=int(cos(%pi)) -(sqrt(-1)*sin(%pi))

83 X31=X1*b3;

84 disp(X31 , ’X3 (1)= ’)
85 // For k=2 ,
86 c3=int(cos (2*%pi))-int((sqrt(-1)*sin(2* %pi)));

87 X32=X2*c3;

88 disp(X32 , ’X3 (2)= ’)
89 // For k=3 ,
90 d3=int(cos (3*%pi))-int((sqrt(-1)*sin(3* %pi)));

91 X33=X3*d3;

92 disp(X33 , ’X3 (3)= ’)
93 disp({,X30 ,X31 ,X32 ,X33 ,}, ’ So , X3(k)= ’)
94

95 // (v) : Now moving ahead to f i n d X4(k)
96 // x4 (n) ={4 ,6 ,4 ,6} and x (n) ={1 ,2 ,3 ,4}
97 //Both a r e r e l a t e d as x4 (n)=x (n)+x [n(+/−) 2]
98 // Using h a l f p e r i o d s h i f t p roper ty , X4(k)=X(k) +[(−1)

ˆk] ∗X(k)
99 // For k=0 ,

100 X40=X0+[(-1) ^0]*X0

101 disp(X40 , ’X40= ’)
102 // For k=1 ,
103 X41=X1+[(-1) ^1]*X1

104 disp(X41 , ’X41= ’)
105 // For k=2 ,
106 X42=X2+[(-1) ^2]*X2

107 disp(X42 , ’X42= ’)
108 // For k=3 ,
109 X43=X3+[(-1) ^3]*X3

110 disp(X43 , ’X43= ’)
111 disp({,X40 ,X41 ,X42 ,X43 ,}, ’ So , X4(k)= ’)

57

	
	Linear Convolution Without Using Inbuilt Scilab Convolution Function
	Derive The Four Point Twiddle Factor Matrix
	Four Point Dit-Fft Without Using Inbuilt Scilab Fft Function
	Four Point Idit-Fft Without Using Inbuilt Scilab Fft Function
	Four Point Dif-Fft Without Using Inbuilt Scilab Fft Function
	Four Point Idif-Fft Without Using Inbuilt Scilab Fft Function
	Derive The Six Point Twiddle Factor Matrix [w6] Useful For Dft Computation
	Derive The Eight Point Twiddle Factor Matrix For Computing Inverse Dft
	Filtering Of Long Data Sequences
	Implement Impulse Invariant Method
	To Design Butterworth Filter With Minimum Readymade Scilab Functions
	To Design Chebyshev Filter With Minimum Readymade Scilab Functions.
	Designing Two Stage Decimator
	Compute Dft Using Matrix Approach And Then Using Dft Properties.

