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Experiment: 1

Linear Convolution Without
Using Inbuilt Scilab
Convolution Function

Scilab code Solution 1.0 Experiment Number 1

1 //AIM: L in ea r c o nv o l u t i o n wi thout u s i n g i n b u i l t
S c i l a b c onv o l u t i o n f u n c t i o n .

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 //Given tha t x ( n ) ={1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} and h ( n ) ={1 ,2}
7 // So ln :
8 x0=1;

9 x1=2;

10 x2=3;

11 x3=4;

12 x4=5;

13 x5=6;

14 x6=7;

15 x7=8;

16 h0=1;
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17 h1=2;

18 xhn0_a=x0*h0;

19 xhn1_a=x1*h0;

20 xhn2_a=x2*h0;

21 xhn3_a=x3*h0;

22 xhn4_a=x4*h0;

23 xhn5_a=x5*h0;

24 xhn6_a=x6*h0;

25 xhn7_a=x7*h0;

26

27 xhn0_b=x0*h1;

28 xhn1_b=x1*h1;

29 xhn2_b=x2*h1;

30 xhn3_b=x3*h1;

31 xhn4_b=x4*h1;

32 xhn5_b=x5*h1;

33 xhn6_b=x6*h1;

34 xhn7_b=x7*h1;

35

36 y0=xhn0_a;

37 y1=xhn0_b+xhn1_a;

38 y2=xhn1_b+xhn2_a;

39 y3=xhn2_b+xhn3_a;

40 y4=xhn3_b+xhn4_a;

41 y5=xhn4_b+xhn5_a;

42 y6=xhn5_b+xhn6_a;

43 y7=xhn6_b+xhn7_a;

44 y8=xhn7_b;

45 disp({,y0,y1,y2 ,y3,y4,y5 ,y6 ,y7,y8 ,}, ’ Output o f
l i n e a r c o nv o l u t i o n i . e y ( n )= ’ )
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Experiment: 2

Derive The Four Point Twiddle
Factor Matrix

Scilab code Solution 2.0 Experiment Number 2

1 //AIM: Der ive the 4 po i n t tw i dd l e f a c t o r matr ix .
2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 W40=cos(0) -(sqrt(-1)*sin (0));

7 W41=cos(%pi/2) -(sqrt(-1))*(sin(%pi /2));

8 W42=cos(%pi) -(sqrt(-1))*(sin(%pi));

9 W43=cos ((3* %pi)/2) -(sqrt(-1))*sin ((3* %pi)/2);

10

11 disp(W40 , ’W40= ’ )
12 disp(W41 , ’W41= ’ )
13 disp(W42 , ’W42= ’ )
14 disp(W43 , ’W43= ’ )
15

16 W44=W40;

17 W49=W41;

18 W46=W42;

19
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20 W4_raw_matrix= [W40 W40 W40 W40;

21 W40 W41 W42 W43;

22 W40 W42 W44 W46;

23 W40 W43 W46 W49]

24 disp(W4_raw_matrix , ’ W4 raw matrix= ’ )
25 disp( ’ Type resume in c o n s o l e and p r e s s e n t e r ’ )
26 pause

27 a=ceil(- 1.225D-16);

28 disp(a, ’ Imag inary pa r t o f W42 & Imag inary pa r t o f
W46 i . e . c e i l (− 1 . 2 25D−16)= ’ )

29 b=ceil(- 1.837D-16);

30 disp(b, ’ Real pa r t o f W43 i . e . c e i l (− 1 . 8 37D−16)= ’ )
31 c=int (6.123D-17);

32 disp(c, ’ Real pa r t o f W41 & Real pa r t o f W49 i . e . i n t
( 6 . 1 2 3D−17)= ’ )

33

34 //So W4 can be mod i f i e d as f o l l o w s :
35 d=real(W42);// Imag inary pa r t i s i g n o r ed s i n c e i t i s

z e r o
36 e=imag(W43)*sqrt(-1);// Real pa r t i s i g n o r ed s i n c e i t

i s z e r o
37 f=imag(W41)*(sqrt(-1));// Real pa r t i s i g n o r ed s i n c e

i t i s z e r o
38

39 W4=[W40 W40 W40 W40;

40 W40 f d e;

41 W40 d W44 d;

42 W40 e d f]

43 disp(W4, ’ F i n a l W4 matr ix = ’ )
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Experiment: 3

Four Point Dit-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 3.0 Experiment Number 3

1 //AIM: Four po i n t DIT−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2

3 //Computing f o u r po i n t DFT f o r x ( n ) ={1 ,2 ,3 ,4} u s i n g
Dec imat ion i n Time−Fast

4 // Fou r i e r t r an s f o rm ( i . e . DIT−FFT )
5 // wi thout u s i n g readymade i n b u i l t S c i l a b f u n c t i o n s

f o r DFT/FFT.
6

7 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
8 //OS windows 10
9 clc;

10 clear;

11 // Let us beg in with the programming . For
under s tand ing , l e t us w r i t e the g i v en

12 // data as
13 //x ( 0 ) =1;x ( 1 ) =2 ,x ( 2 ) =3 ,x ( 3 )=4
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14 x0=1;

15 x2=3;

16 x1=2;

17 x3=4;

18 // Stage I computat ion
19 x0a=x2+x0;//Computing Stage−I output at p o s i t i o n 1
20 disp(x0a , ’ Stage−I output at p o s i t i o n 1 ’ )
21 x2b=(x2 -x0)*(-1);//Computing Stage−I output at

p o s i t i o n 2
22 disp(x2b , ’ Stage−I output at p o s i t i o n 2 ’ )
23 x1c=x3+x1;//Computing Stage−I output at p o s i t i o n 3
24 disp(x1c , ’ Stage−I output at p o s i t i o n 3 ’ )
25 x3d=(x3 -x1)*(-1);//Computing Stage−I output at

p o s i t i o n 4
26 disp(x3d , ’ Stage−I output at p o s i t i o n 4 ’ )
27 // Stage−I I computat ion
28 x3d1=x3d*(-sqrt(-1));// Mu l t i p l y by (− j ) i n the l a s t

l i n e
29 disp(x3d1 , ’ Stage−I I i nput at the f o u r t h l i n e ’ )
30 X0=x1c+x0a;//Computing f i n a l s t a g e output va lu e X( 0 )
31 disp(X0, ’ The f i n a l s t a g e output X( 0 )= ’ )
32 X1=x3d1+x2b;//Computing f i n a l s t a g e output va l u e X

( 1 )
33 disp(X1, ’ The f i n a l s t a g e output X( 1 )= ’ )
34 X2=(x1c -x0a)*(-1);//Computing f i n a l s t a g e output

va lu e X( 2 )
35 disp(X2, ’ The f i n a l s t a g e output X( 2 )= ’ )
36 X3=(x3d1 -x2b)*(-1);//Computing f i n a l s t a g e output

va lu e X( 3 )
37 disp(X3, ’ The f i n a l s t a g e output X( 3 )= ’ )
38 disp({,X0,X1,X2 ,X3 ,}, ’ So , the DFT o f x ( n ) u s i n g

Decimation−in−Time Fast Fou r i e r Transform (DIT−FFT
) i s X( k )= ’ )
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Experiment: 4

Four Point Idit-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 4.0 Experiment Number 4

1 //AIM: Four po i n t IDIT−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2

3 //Computing f o u r po i n t IDFT f o r X( k )={10,−2+2 j
,−2,−2−2 j } u s i n g

4 // I n v e r s e Dec imat ion i n Time−Fast Fou r i e r t r an s f o rm
( i . e . IDIT−FFT )

5 // wi thout u s i n g readymade i n b u i l t S c i l a b f u n c t i o n s
f o r IDFT/IFFT .

6

7 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
8 //OS windows 10
9 clc;

10 clear;

11 // Let us beg in with the programming . For
under s tand ing , l e t us w r i t e the g i v en

12 // data as
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13 //X( 0 ) =10;X( 1 )=−2+2j ,X( 2 )=−2,X( 3 )=−2−2 j
14 X0c =10; //X0c means complex c on j u ga t e o f XO
15 X2c=-2; //X2c means complex c on j u ga t e o f X2
16 X1c=(-2)+((-1) *(2)*(sqrt(-1)));//X1c means complex

c on j u ga t e o f X1
17 X3c=(-2) -((-1)*(2)*(sqrt(-1)));//X3c means complex

c on j u ga t e o f X3
18 disp(X0c , ’X∗ ( 0 )= ’ )
19 disp(X2c , ’X∗ ( 2 )= ’ )
20 disp(X1c , ’X∗ ( 1 )= ’ )
21 disp(X3c , ’X∗ ( 3 )= ’ )
22 x0_star =((( X3c+X1c)*(1))+(( X2c+X0c)*(1)))*(1/4)

23 disp(x0_star , ’ x ∗ ( 0 )= ’ )
24 x1_star =(((X3c -X1c)*(-1)*(-sqrt(-1)))+(X2c -X0c)*(-1)

)*(1/4);

25 disp(x1_star , ’ x ∗ ( 1 )= ’ )
26 x2_star =((( X3c+X1c)*(1) -(X2c+X0c))*(-1))*(1/4);

27 disp(x2_star , ’ x ∗ ( 2 )= ’ )
28 x3_star =((((X3c -X1c)*(-1)*(-sqrt(-1))) -((X2c -X0c)

*(-1)))*(-1))*(1/4);

29 disp(x3_star , ’ x ∗ ( 3 )= ’ )
30 disp({,x0_star ,x1_star ,x2_star ,x3_star ,}, ’ x ∗ ( n )= ’ )
31 //The computed va lu e i s x ∗ ( n ) . But we need x ( n ) as

f i n a l output .
32 //We w i l l s e p a r a t e r e a l pa r t o f x ∗ ( n )
33 //We w i l l s e p a r a t e imag ina ry pa r t o f x ∗ ( n ) and take

i t s complex c on j u ga t e by
34 // mu l t i p l y i n g by a f a c t o r o f (−1)
35 x0_star_real=real(x0_star);

36 x0_star_conj =(-1)*(imag(x0_star));

37 x1_star_real=real(x1_star);

38 x1_star_conj =(-1)*(imag(x1_star));

39 x2_star_real=real(x2_star);

40 x2_star_conj =(-1)*(imag(x2_star));

41 x3_star_real=real(x3_star);

42 x3_star_conj =(-1)*(imag(x3_star));

43 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex
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44 // c on j u ga t e i s taken to g e t x ( 0 ) , ( 1 ) , x ( 2 ) and x ( 3 )
45 x0=x0_star_real+x0_star_conj

46 x1=x1_star_real+x1_star_conj

47 x2=x2_star_real+x2_star_conj

48 x3=x3_star_real+x3_star_conj

49 disp({,x0,x1,x2 ,x3 ,}, ’ So , the IDFT o f X( k ) u s i n g
I n v e r s e Decimation−in−Time Fast Fou r i e r Transform
( IDIT−FFT) i s x ( n )= ’ )

Scilab code Solution 4.1 Experiment Number 4 extra solution

1 //AIM: Four po i n t IDIT−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2 // ( This i s an e x t r a s o l u t i o n )
3

4 //Computing f o u r po i n t IDFT f o r X( k )={10,−2+2 j
,−2,−2−2 j } u s i n g

5 // I n v e r s e Dec imat ion i n Time−Fast Fou r i e r t r an s f o rm
( i . e . IDIT−FFT )

6 // wi thout u s i n g readymade i n b u i l t S c i l a b f u n c t i o n s
f o r IDFT/IFFT .

7

8 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
9 //OS windows 10

10 clc;

11 clear;

12 // Let us beg in with the programming . For
under s tand ing , l e t us w r i t e the g i v en

13 // data as
14 //X( 0 ) =10;X( 1 )=−2+2j ,X( 2 )=−2,X( 3 )=−2−2 j
15 X0_conj =10; // X0 conj means complex c on j u ga t e o f XO
16 X2_conj =-2; // X2 conj means complex c on j u ga t e o f X2
17 X1_conj =(-2)+(( -1) *(2)*(sqrt(-1)));// X1 conj means

complex c on j u ga t e o f X1
18 X3_conj =(-2) -((-1)*(2)*(sqrt(-1)));// X3 conj means
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complex c on j u ga t e o f X3
19 disp(X0_conj , ’X∗ ( 0 )= ’ )
20 disp(X2_conj , ’X∗ ( 2 )= ’ )
21 disp(X1_conj , ’X∗ ( 1 )= ’ )
22 disp(X3_conj , ’X∗ ( 3 )= ’ )
23 // Stage I computat ion
24 X0a=X2_conj+X0_conj;//Computing Stage−I output at

l i n e 1
25 disp(X0a , ’ Stage−I output at l i n e 1 ’ )
26 X2b=(X2_conj -X0_conj)*(-1);//Computing Stage−I

output at l i n e 2
27 disp(X2b , ’ Stage−I output at l i n e 2 ’ )
28 X1c=X3_conj+X1_conj;//Computing Stage−I output at

l i n e 3
29 disp(X1c , ’ Stage−I output at l i n e 3 ’ )
30 X3d=(X3_conj -X1_conj)*(-1);//Computing Stage−I

output at l i n e 4
31 disp(X3d , ’ Stage−I output at l i n e 4 ’ )
32 // Stage I I computat ion
33 X3d1=X3d*(-sqrt(-1));// Mu l t i p l y by (− j ) i n the l a s t

l i n e
34 disp(X3d1 , ’ Stage−I I i nput at the f o u r t h l i n e ’ )
35 x0_star=X1c+X0a;//Computing s tage−I I output va l u e at

l i n e 1
36 disp(x0_star , ’ The s tage−I I output va l u e at l i n e 1= ’ )
37 x1_star=X3d1+X2b;//Computing s tage−I I output va l u e

at l i n e 2
38 disp(x1_star , ’ The s tage−I I output va l u e at l i n e 2 = ’

)

39 x2_star =(X1c -X0a)*(-1);//Computing s tage−I I output
va lu e at l i n e 3

40 disp(x2_star , ’ The s tage−I I output v a l u e a t l i n e 3= ’ )
41 x3_star =(X3d1 -X2b)*(-1);//Computing s tage−I I output

va lu e at l i n e 4
42 disp(x3_star , ’ The s tage−I I output va l u e at l i n e 4= ’ )
43 //Now we w i l l mu l t i p l y s tage−I I output v a l u e s

i n d i v i d u a l l y with a f a c t o r o f
44 // (1/N) . Here N=4 ,So we w i l l mu l t i p l y by ( 1/4 )
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45 x0_star_on_multiplication =(1/4) *( x0_star);// Mu l t i p l y
by ( 1/4 )

46 disp(x0_star_on_multiplication , ’ x ∗ ( 0 )= ’ )
47 x1_star_on_multiplication =(1/4) *( x1_star);// Mu l t i p l y

by ( 1/4 )
48 disp(x1_star_on_multiplication , ’ x ∗ ( 1 )= ’ )
49 x2_star_on_multiplication =(1/4) *( x2_star);// Mu l t i p l y

by ( 1/4 )
50 disp(x2_star_on_multiplication , ’ x ∗ ( 2 )= ’ )
51 x3_star_on_multiplication =(1/4) *( x3_star);// Mu l t i p l y

by ( 1/4 )
52 disp(x3_star_on_multiplication , ’ x ∗ ( 3 )= ’ )
53 disp({, x0_star_on_multiplication ,

x1_star_on_multiplication ,

x2_star_on_multiplication ,

x3_star_on_multiplication ,}, ’ x ∗ ( n )= ’ )
54 x0_star_real=real(x0_star_on_multiplication);

55 x0_star_conj =(-1)*(imag(x0_star_on_multiplication));

56 x1_star_real=real(x1_star_on_multiplication);

57 x1_star_conj =(-1)*(imag(x1_star_on_multiplication));

58 x2_star_real=real(x2_star_on_multiplication);

59 x2_star_conj =(-1)*(imag(x2_star_on_multiplication));

60 x3_star_real=real(x3_star_on_multiplication);

61 x3_star_conj =(-1)*(imag(x3_star_on_multiplication));

62 x0=x0_star_real+x0_star_conj

63 x1=x1_star_real+x1_star_conj

64 x2=x2_star_real+x2_star_conj

65 x3=x3_star_real+x3_star_conj

66 disp({,x0,x1,x2 ,x3 ,}, ’ So , the IDFT o f X( k ) u s i n g
I n v e r s e Decimation−in−Time Fast Fou r i e r Transform
( IDIT−FFT) i s x ( n )= ’ )
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Experiment: 5

Four Point Dif-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 5.0 Experiment Number 5

1 //AIM: Four po i n t DIF−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2

3 //Computing f o u r po i n t DFT f o r x ( n ) ={1 ,2 ,3 ,4} u s i n g
4 // Dec imat ion i n Frequency−Fast Fou r i e r t r an s f o rm ( i .

e . DIF−FFT ) wi thout u s i n g
5 // readymade i n b u i l t S c i l a b f u n c t i o n s f o r DFT/FFT.
6

7 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
8 //OS windows 10
9 clc;

10 clear;

11 x0=1;

12 x1=2;

13 x2=3;

14 x3=4;

15 // Stage I computat ion
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16 x0a=x2+x0;//Computing Stage−I output at p o s i t i o n 1
17 disp(x0a , ’ Stage−I output at p o s i t i o n 1 ’ )
18 x1b=(x3+x1);//Computing Stage−I output at p o s i t i o n 2
19 disp(x1b , ’ Stage−I output at p o s i t i o n 2 ’ )
20 x2c=(x2 -x0)*(-1);//Computing Stage−I output at

p o s i t i o n 3
21 disp(x2c , ’ Stage−I output at p o s i t i o n 3 ’ )
22 x3d=(x3 -x1)*(-1);//Computing Stage−I output at

p o s i t i o n 4
23 disp(x3d , ’ Stage−I output at p o s i t i o n 4 ’ )
24 // Stage−I I computat ion
25 x3d1=x3d*(-sqrt(-1));// Mu l t i p l y by (− j ) i n the l a s t

l i n e
26 disp(x3d1 , ’ Stage−I I i nput at the f o u r t h l i n e ’ )
27 X0=x1b+x0a;//Computing f i n a l s t a g e output va lu e X( 0 )
28 disp(X0, ’ The f i n a l s t a g e output X( 0 )= ’ )
29 X2=(x1b -x0a)*(-1);//Computing f i n a l s t a g e output

va lu e X( 1 )
30 disp(X2, ’ The f i n a l s t a g e output X( 2 )= ’ )
31 X1=(x3d1+x2c);//Computing f i n a l s t a g e output va lu e X

( 2 )
32 disp(X1, ’ The f i n a l s t a g e output X( 1 )= ’ )
33 X3=(x3d1 -x2c)*(-1);//Computing f i n a l s t a g e output

va lu e X( 3 )
34 disp(X3, ’ The f i n a l s t a g e output X( 3 )= ’ )
35 disp({,X0,X1,X2 ,X3 ,}, ’ So , the DFT o f x ( n ) u s i n g

Decimation−in−Frequency Fast Fou r i e r Transform (
DIF−FFT) i s X( k )= ’ )
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Experiment: 6

Four Point Idif-Fft Without
Using Inbuilt Scilab Fft
Function

Scilab code Solution 6.0 Experiment Number 6

1 //AIM: Four po i n t IDIF−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2

3 //Computing f o u r po i n t IDFT f o r X( k )={10,−2+2 j
,−2,−2−2 j } u s i n g

4 // I n v e r s e Dec imat ion i n Frequency−Fast Fou r i e r
t r an s f o rm ( i . e . IDIF−FFT )

5 // wi thout u s i n g readymade i n b u i l t S c i l a b f u n c t i o n s
f o r IDFT/IFFT .

6

7 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
8 //OS windows 10
9 clc;

10 clear;

11 // Let us beg in with the programming . For
under s tand ing , l e t us w r i t e the g i v en

12 // data as
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13 //X( 0 ) =10;X( 1 )=−2+2j ,X( 2 )=−2,X( 3 )=−2−2 j
14 X0c =10; //X0c means complex c on j u ga t e o f XO
15 X1c=(-2)+((-1) *(2)*(sqrt(-1)));//X1c means complex

c on j u ga t e o f X1
16 X2c=-2; //X2c means complex c on j u ga t e o f X2
17 X3c=(-2) -((-1)*(2)*(sqrt(-1)));//X3c means complex

c on j u ga t e o f X3
18 disp(X0c , ’X∗ ( 0 )= ’ )
19 disp(X1c , ’X∗ ( 1 )= ’ )
20 disp(X2c , ’X∗ ( 2 )= ’ )
21 disp(X3c , ’X∗ ( 3 )= ’ )
22 x0_star =((X3c+X1c)*(1)+(X2c+X0c)*(1))*(1/4);//

Computing x ∗ ( 0 )
23 disp(x0_star , ’ x ∗ ( 0 )= ’ )
24 x2_star =(((( X3c+X1c)*(1)) -((X2c+X0c)*(1)))*(-1))

*(1/4);//Computing x ∗ ( 2 )
25 disp(x2_star , ’ x ∗ ( 2 )= ’ )
26 x1_star =((X3c -X1c)*(-1)*(-sqrt(-1))+(X2c -X0c)*(-1))

*(1/4);//Computing x ∗ ( 1 )
27 disp(x1_star , ’ x ∗ ( 1 )= ’ )
28 //Computing x ∗ ( 3 )
29 x3_star =((((X3c -X1c)*(-1)*(-sqrt(-1))-(X2c -X0c)*(-1)

))*(-1))*(1/4);

30 disp(x3_star , ’ x ∗ ( 3 )= ’ )
31 disp({,x0_star ,x1_star ,x2_star ,x3_star ,}, ’ x ∗ ( n )= ’ )
32 //The computed va lu e i s x ∗ ( n ) . But we need x ( n ) as

f i n a l output .
33 //We w i l l s e p a r a t e r e a l pa r t o f x ∗ ( n )
34 //We w i l l s e p a r a t e imag ina ry pa r t o f x ∗ ( n ) and take

i t s complex c on j u ga t e by
35 // mu l t i p l y i n g by a f a c t o r o f (−1)
36 x0_star_real=real(x0_star);

37 x0_star_conj =(-1)*(imag(x0_star));

38 x1_star_real=real(x1_star);

39 x1_star_conj =(-1)*(imag(x1_star));

40 x2_star_real=real(x2_star);

41 x2_star_conj =(-1)*(imag(x2_star));

42 x3_star_real=real(x3_star);
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43 x3_star_conj =(-1)*(imag(x3_star));

44 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

45 // c on j u ga t e i s taken to g e t xx ( 0 ) , ( 1 ) , x ( 2 ) and x ( 3 )
46 x0=x0_star_real+x0_star_conj;//Computing x ( 0 )
47 x1=x1_star_real+x1_star_conj;//Computing x ( 1 )
48 x2=x2_star_real+x2_star_conj;//Computing x ( 2 )
49 x3=x3_star_real+x3_star_conj;//Computing x ( 3 )
50 disp({,x0,x1,x2 ,x3 ,}, ’ So , the IDFT o f X( k ) u s i n g

I n v e r s e Decimation−in−Frequency Fast Fou r i e r
Transform ( IDIF−FFT) i s x ( n )= ’ )

Scilab code Solution 6.1 Experiment Number 6 extra solution

1 //AIM: Four po i n t IDIF−FFT without u s i n g i n b u i l t
S c i l a b FFT f u n c t i o n

2 // ( This i s an e x t r a s o l u t i o n )
3

4 //Computing f o u r po i n t IDFT f o r X( k )={10,−2+2 j
,−2,−2−2 j } u s i n g I n v e r s e

5 // Dec imat ion i n Frequency−Fast Fou r i e r t r an s f o rm ( i .
e . IDIF−FFT )

6 // wi thout u s i n g readymade i n b u i l t S c i l a b f u n c t i o n s
f o r IDFT/IFFT .

7

8 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
9 //OS windows 10
10 clc;

11 clear;

12 // Let us beg in with the programming . For
under s tand ing , l e t us w r i t e the g i v en

13 // data as
14 //X( 0 ) =10;X( 1 )=−2+2j ,X( 2 )=−2,X( 3 )=−2−2 j
15 X0_conj =10; // X0 conj means complex c on j u ga t e o f X(O)
16 X1_conj =(-2)+(( -1) *(2)*(sqrt(-1)));// X1 conj means
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complex c on j u ga t e o f X( 1 )
17 X2_conj =-2; // X2 conj means complex c on j u ga t e o f X( 2 )
18 X3_conj =(-2) -((-1)*(2)*(sqrt(-1)));// X3 conj means

complex c on j u ga t e o f X( 3 )
19 disp(X0_conj , ’X∗ ( 0 )= ’ )
20 disp(X1_conj , ’X∗ ( 1 )= ’ )
21 disp(X2_conj , ’X∗ ( 2 )= ’ )
22 disp(X3_conj , ’X∗ ( 3 )= ’ )
23 // Stage I computat ion
24 X0a=X2_conj+X0_conj;//Computing Stage−I output at

l i n e 1
25 disp(X0a , ’ Stage−I output at l i n e 1 ’ )
26 X1b=( X3_conj+X1_conj);//Computing Stage−I output at

l i n e 2
27 disp(X1b , ’ Stage−I output at l i n e 2 ’ )
28 X2c=(X2_conj -X0_conj)*(-1);//Computing Stage−I

output at l i n e 3
29 disp(X2c , ’ Stage−I output at l i n e 3 ’ )
30 X3d=(X3_conj -X1_conj)*(-1);//Computing Stage−I

output at l i n e 4
31 disp(X3d , ’ Stage−I output at l i n e 4 ’ )
32 // Stage I I computat ion
33 X3d1=X3d*(-sqrt(-1));// Mu l t i p l y by (− j ) i n the l a s t

l i n e
34 disp(X3d1 , ’ Stage−I I i nput at the f o u r t h l i n e ’ )
35 x0_conj=X1b+X0a;//Computing s tage−I I output va l u e at

l i n e 1
36 disp(x0_conj , ’ The s tage−I I output va l u e at l i n e 1= ’ )
37 x2_conj =(X1b -X0a)*(-1);//Computing s tage−I I output

va lu e at l i n e 2
38 disp(x2_conj , ’ The s tage−I I output va l u e at l i n e 2= ’ )
39 x1_conj=X3d1+X2c;//Computing s tage−I I output va l u e

at l i n e 3
40 disp(x1_conj , ’ The s tage−I I output va l u e at l i n e 3= ’ )
41 x3_conj =(X3d1 -X2c)*(-1);//Computing s tage−I I output

va lu e at l i n e 4
42 disp(x3_conj , ’ The s tage−I I output va l u e at l i n e 4= ’ )
43 //Now we w i l l mu l t i p l y s tage−I I output v a l u e s
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i n d i v i d u a l l y with a f a c t o r o f
44 // (1/N) . Here N=4 ,So we w i l l mu l t i p l y by ( 1/4 )
45 x0_conj_final =(1/4) *( x0_conj)

46 disp(x0_conj_final , ’ x ∗ ( 0 )= ’ )
47 x2_conj_final =(1/4) *( x2_conj)

48 disp(x2_conj_final , ’ x ∗ ( 2 )= ’ )
49 x1_conj_final =(1/4) *( x1_conj)

50 disp(x1_conj_final , ’ x ∗ ( 1 )= ’ )
51 x3_conj_final =(1/4) *( x3_conj)

52 disp(x3_conj_final , ’ x ∗ ( 3 )= ’ )
53 disp({,x0_conj_final ,x1_conj_final ,x2_conj_final ,

x3_conj_final ,}, ’ So , the IDFT o f X( k ) u s i n g
I n v e r s e Decimation−in−Frequency Fast Fou r i e r
Transform ( IDIF−FFT) i s x ( n )= ’ )
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Experiment: 7

Derive The Six Point Twiddle
Factor Matrix [w6] Useful For
Dft Computation

Scilab code Solution 7.0 Experiment Number 7

1 //AIM: Der ive the s i x po i n t tw i dd l e f a c t o r matr ix [W6
] u s e f u l f o r DFT computat ion

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 //Computing the tw i dd l e f a c t o r v a l u e s f o r W60,W61,
W62,W63,W64,W65 :

7 W60=int(cos(0))-(sqrt(-1)*int(sin(0)));

8 W61=cos ((2* %pi *1)/6) -(sqrt(-1))*sin ((2* %pi*1) /6);

9 W62=(cos ((2* %pi *2)/6)) -(sqrt(-1))*sin ((2* %pi *2) /6);

10 W63=cos ((2* %pi *3)/6)-int((sqrt(-1))*sin ((2* %pi *3)/6)

);

11 W64=cos ((2* %pi *4)/6) -(sqrt(-1))*(sin ((2* %pi*4) /6));

12 W65=cos ((2* %pi *5)/6) -(sqrt(-1))*sin ((2* %pi*5) /6);

13

14 disp(W60 , ’W60= ’ )
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15 disp(W61 , ’W61= ’ )
16 disp(W62 , ’W62= ’ )
17 disp(W63 , ’W63= ’ )
18 disp(W64 , ’W64= ’ )
19 disp(W65 , ’W65= ’ )
20

21 //W60=W612=W618=W624=W630=W636 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

22 W66=W60;

23 W612=W66;

24 W618=W612;

25 W624=W618;

26 W630=W624;

27 W636=W630;

28

29 //W61=W67=W613=W619=W625 // Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

30 W67=W61;

31 W613=W67;

32 W619=W613;

33 W625=W619;

34

35 //W62=W68=W614=W620 // Cy c l i c p r op e r t y o f tw i dd l e
f a c t o r

36 W68=W62;

37 W614=W68;

38 W620=W614;

39

40 //W63=W69=W615=W621 // Cy c l i c p r op e r t y o f tw i dd l e
f a c t o r

41 W69=W63;

42 W615=W69;

43 W621=W615;

44

45 //W64=W610=W616=W622 // Cy c l i c p r op e r t y o f tw i dd l e
f a c t o r

46 W610=W64;

47 W616=W610;
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48 W622=W616;

49

50 //W65=W613=W621=W629 // Cy c l i c p r op e r t y o f tw i dd l e
f a c t o r

51 W613=W65;

52 W621=W613;

53 W629=W621;

54

55 W6= [W60 W60 W60 W60 W60 W60;W60 W61 W62 W63 W64 W65

;W60 W62 W64 W66 W68 W610;W60 W63 W66 W69 W612

W615;W60 W64 W68 W612 W616 W620;W60 W65 W610 W615

W620 W625];

56 // D i s p l a y i n g the W6 matr ix :
57 disp(W6, ’ [W6]= ’ )
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Experiment: 8

Derive The Eight Point
Twiddle Factor Matrix For
Computing Inverse Dft

Scilab code Solution 8.0 Experiment Number 8

1 //AIM: Der ive the 8 po i n t tw i dd l e f a c t o r matr ix f o r
computing i n v e r s e DFT

2

3 // i . e . W8∗ matr ix d e r i v a t i o n
4

5 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
6 //OS windows 10
7 clc;

8 clear;

9 //Computing the tw i dd l e f a c t o r v a l u e s f o r W80,W81,
W82,W83,W84,W85,W86,W87 :

10 W80=int(cos(0))+(sqrt(-1)*int(sin(0)));

11 W81=cos ((2* %pi *1)/8)+(sqrt(-1))*sin ((2* %pi*1) /8);

12 W82=int(cos ((2* %pi*2)/8))+(sqrt(-1))*sin ((2* %pi *2)

/8);

13 W83=cos ((2* %pi *3)/8)+(sqrt(-1))*sin ((2* %pi*3) /8);

14 W84=cos ((2* %pi *4)/8)+(sqrt(-1))*int(sin ((2* %pi *4)/8)

26



);

15 W85=cos ((2* %pi *5)/8)+(sqrt(-1))*sin ((2* %pi*5) /8);

16 W86=int(cos ((2* %pi*6)/8))+(sqrt(-1))*sin ((2* %pi *6)

/8);

17 W87=cos ((2* %pi *7)/8)+(sqrt(-1))*sin ((2* %pi*7) /8);

18

19 disp(W80 , ’W80= ’ )
20 disp(W81 , ’W81= ’ )
21 disp(W82 , ’W82= ’ )
22 disp(W83 , ’W83= ’ )
23 disp(W84 , ’W84= ’ )
24 disp(W85 , ’W85= ’ )
25 disp(W86 , ’W86= ’ )
26 disp(W87 , ’W87= ’ )
27

28 //W80=W88=W816=W824=W832=W840=W848 ; / / Cy c l i c p r op e r t y
o f tw i dd l e f a c t o r

29 W88=W80;

30 W816=W88;

31 W824=W816;

32 W832=W824;

33 W840=W832;

34 W848=W840;

35

36 //W81=W89=W817=W825=W833=W841=W849 ; / / Cy c l i c p r op e r t y
o f tw i dd l e f a c t o r

37 W89=W81;

38 W817=W89;

39 W825=W817;

40 W833=W825;

41 W841=W833;

42 W849=W841;

43

44 //W82=W810=W818=W826=W834=W842 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

45 W810=W82;

46 W818=W810;

47 W826=W818;
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48 W834=W826;

49 W842=W834;

50

51 //W83=W811=W819=W827=W835=W843 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

52 W811=W83;

53 W819=W811;

54 W827=W819;

55 W835=W827;

56 W843=W835;

57

58 //W84=W812=W820=W828=W836=W844 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

59 W812=W84;

60 W820=W812;

61 W828=W820;

62 W836=W828;

63 W844=W836;

64

65 //W85=W813=W821=W829=W837=W845 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

66 W813=W85;

67 W821=W813;

68 W829=W821;

69 W837=W829;

70 W845=W837;

71

72 //W86=W814=W822=W830=W838=W846 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

73 W814=W86;

74 W822=W814;

75 W830=W822;

76 W838=W830;

77 W846=W838;

78

79 //W87=W815=W823=W831=W839=W847 ; / / Cy c l i c p r op e r t y o f
tw i dd l e f a c t o r

80 W815=W87;
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81 W823=W815;

82 W831=W823;

83 W839=W831;

84 W847=W839;

85

86 W8_star= [W80 W80 W80 W80 W80 W80 W80 W80;W80 W81

W82 W83 W84 W85 W86 W87;W80 W82 W84 W86 W88 W810

W812 W814;W80 W83 W86 W89 W812 W815 W818 W821;W80

W84 W88 W812 W816 W820 W824 W828;W80 W85 W810

W815 W820 W825 W830 W835;W80 W86 W812 W818 W824

W830 W836 W842;W80 W87 W814 W821 W828 W835 W842

W849];

87

88 disp(W8_star , ’ [W8∗ ]= ’ )
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Experiment: 9

Filtering Of Long Data
Sequences

Scilab code Solution 9.0 Experiment Number 9

1 //AIM: F i l t e r i n g o f l ong data s e qu en c e s
2

3 // Overlap−add method u s i n g FFT−IFFT t e chn i qu e (
w i thout u s i n g i n b u i l t S c i l a b

4 // f u n c t i o n s f o r DFT/IDFT or FFT/IFFT)
5

6 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
7 //OS windows 10
8 clc;

9 clear;

10 //Given tha t x ( n ) ={1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} and h ( n ) ={1 ,2}
11 // So ln :
12 xn =[1 2 3 4 5 6 7 8]; //Nx=8
13 hn =[1 2];

14 // S i n c e Nx=8 ,Nh=2 and we know Nx=m∗Nh( so 8=m∗2)
g i v i n g m=4; and so x ( n ) has been

15 // p a r t i t i o n e d i n t o 4 b l o c k s o f l e n g t h Nh=2
16 x0n =[1 2];

17 x1n =[3 4];
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18 x2n =[5 6];

19 x3n =[7 8];

20 // Length o f each p a r t i t i o n e d input i . e x0n , x1n , x2n
and x3n i s 2( i . e . L=2)

21 //Here l e n g t h o f impu l s e r e s p on s e a r r ay h ( n ) i s 2 ( i
. e . M=2) or Nh=2

22 //Hence , we pad the p a r t i t i o n e d s equence and h ( n )
with z e r o s such tha t the l e n g t h

23 // o f each one becomes ’ a t l e a s t ’ L+M−1 i . e . 3
24 //But s i n c e we know 4 po i n t DFT matrix , we can pad an

a d d i t i o n a l z e r o & make the
25 // l e n g t h o f each s equence =4
26 x0n_z =[1 2 0 0]; // x0n z r e p r e s e n t s z e r o pad i s done

to x0n
27 x1n_z =[3 4 0 0]; // x1n z r e p r e s e n t s z e r o pad i s done

to x1n
28 x2n_z =[5 6 0 0]; // x2n z r e p r e s e n t s z e r o pad i s done

to x2n
29 x3n_z =[7 8 0 0]; // x3n z r e p r e s e n t s z e r o pad i s done

to x3n
30 hn_z =[1 2 0 0]; // hn z r e p r e s e n t s z e r o pad i s done to

hn
31

32 //Computing FFT f o r x0n z
33 x0n_z_0 =1; // x0n z 0 r e p r e s e n t s the 0 th sample o f

x0n z
34 x0n_z_1 =2; // x0n z 1 r e p r e s e n t s the 1 s t sample o f

x0n z
35 x0n_z_2 =0; // x0n z 2 r e p r e s e n t s the 2nd sample o f

x0n z
36 x0n_z_3 =0; // x0n z 3 r e p r e s e n t s the 3 rd sample o f

x0n z
37 X0_0=( x0n_z_2+x0n_z_0)*(1)+( x0n_z_3+x0n_z_1)*(1)

38 X0_1=(x0n_z_3 -x0n_z_1)*(-1)*(-sqrt(-1))+(x0n_z_2 -

x0n_z_0)*(-1);

39 X0_2 =(( x0n_z_3+x0n_z_1)*(1) -(x0n_z_2+x0n_z_0)*(1))

*(-1);

40 X0_3 =(( x0n_z_3 -x0n_z_1)*(-1)*(-sqrt(-1)) -(x0n_z_2 -
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x0n_z_0)*(-1))*(-1);

41 disp({,X0_0 ,X0_1 ,X0_2 ,X0_3 ,}, ’ So , the DFT o f x0 ( n )
u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s X0( k )= ’ )

42

43 //Computing FFT f o r x1n z
44 x1n_z_0 =3; // x1n z 0 r e p r e s e n t s the 0 th sample o f

x1n z
45 x1n_z_1 =4; // x1n z 1 r e p r e s e n t s the 1 s t sample o f

x1n z
46 x1n_z_2 =0; // x1n z 2 r e p r e s e n t s the 2nd sample o f

x1n z
47 x1n_z_3 =0; // x1n z 3 r e p r e s e n t s the 3 rd sample o f

x1n z
48 X1_0=( x1n_z_2+x1n_z_0)*(1)+( x1n_z_3+x1n_z_1)*(1)

49 X1_1=(x1n_z_3 -x1n_z_1)*(-1)*(-sqrt(-1))+(x1n_z_2 -

x1n_z_0)*(-1);

50 X1_2 =(( x1n_z_3+x1n_z_1)*(1) -(x1n_z_2+x1n_z_0)*(1))

*(-1);

51 X1_3 =(( x1n_z_3 -x1n_z_1)*(-1)*(-sqrt(-1)) -(x1n_z_2 -

x1n_z_0)*(-1))*(-1);

52 disp({,X1_0 ,X1_1 ,X1_2 ,X1_3 ,}, ’ So , the DFT o f x1 ( n )
u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s X1( k )= ’ )

53

54 //Computing FFT f o r x2n z
55 x2n_z_0 =5; // x2n z 0 r e p r e s e n t s the 0 th sample o f

x2n z
56 x2n_z_1 =6; // x2n z 1 r e p r e s e n t s the 1 s t sample o f

x2n z
57 x2n_z_2 =0; // x2n z 2 r e p r e s e n t s the 2nd sample o f

x2n z
58 x2n_z_3 =0; // x2n z 3 r e p r e s e n t s the 3 rd sample o f

x2n z
59 X2_0=( x2n_z_2+x2n_z_0)*(1)+( x2n_z_3+x2n_z_1)*(1)

60 X2_1=(x2n_z_3 -x2n_z_1)*(-1)*(-sqrt(-1))+(x2n_z_2 -

x2n_z_0)*(-1);

61 X2_2 =(( x2n_z_3+x2n_z_1)*(1) -(x2n_z_2+x2n_z_0)*(1))
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*(-1);

62 X2_3 =(( x2n_z_3 -x2n_z_1)*(-1)*(-sqrt(-1)) -(x2n_z_2 -

x2n_z_0)*(-1))*(-1);

63 disp({,X2_0 ,X2_1 ,X2_2 ,X2_3 ,}, ’ So , the DFT o f x2 ( n )
u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s X2( k )= ’ )

64

65 //Computing FFT f o r x3n z
66 x3n_z_0 =7; // x3n z 0 r e p r e s e n t s the 0 th sample o f

x3n z
67 x3n_z_1 =8; // x3n z 1 r e p r e s e n t s the 1 s t sample o f

x3n z
68 x3n_z_2 =0; // x3n z 2 r e p r e s e n t s the 2nd sample o f

x3n z
69 x3n_z_3 =0; // x3n z 3 r e p r e s e n t s the 3 rd sample o f

x3n z
70 X3_0=( x3n_z_2+x3n_z_0)*(1)+( x3n_z_3+x3n_z_1)*(1)

71 X3_1=(x3n_z_3 -x3n_z_1)*(-1)*(-sqrt(-1))+(x3n_z_2 -

x3n_z_0)*(-1);

72 X3_2 =(( x3n_z_3+x3n_z_1)*(1) -(x3n_z_2+x3n_z_0)*(1))

*(-1);

73 X3_3 =(( x3n_z_3 -x3n_z_1)*(-1)*(-sqrt(-1)) -(x3n_z_2 -

x3n_z_0)*(-1))*(-1);

74 disp({,X3_0 ,X3_1 ,X3_2 ,X3_3 ,}, ’ So , the DFT o f x3 ( n )
u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s X3( k )= ’ )

75

76 //Computing FFT f o r hn z
77 hn_z_0 =1; // hn z 0 r e p r e s e n t s the 0 th sample o f hn z
78 hn_z_1 =2; // hn z 1 r e p r e s e n t s the 1 s t sample o f hn z
79 hn_z_2 =0; // hn z 2 r e p r e s e n t s the 2nd sample o f hn z
80 hn_z_3 =0; // hn z 3 r e p r e s e n t s the 3 rd sample o f hn z
81 Hk_0=( hn_z_2+hn_z_0)*(1)+( hn_z_3+hn_z_1)*(1)

82 Hk_1=(hn_z_3 -hn_z_1)*(-1)*(-sqrt(-1))+(hn_z_2 -hn_z_0

)*(-1);

83 Hk_2 =(( hn_z_3+hn_z_1)*(1) -(hn_z_2+hn_z_0)*(1))*(-1);

84 Hk_3 =((hn_z_3 -hn_z_1)*(-1)*(-sqrt(-1))-(hn_z_2 -

hn_z_0)*(-1))*(-1);
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85 disp({,Hk_0 ,Hk_1 ,Hk_2 ,Hk_3 ,}, ’ So , the DFT o f h ( n )
u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s H( k )= ’ )

86

87 Y0k0=(X0_0).*( Hk_0);

88 Y0k1=(X0_1).*( Hk_1);

89 Y0k2=(X0_2).*( Hk_2);

90 Y0k3=(X0_3).*( Hk_3);

91 Y0k=[Y0k0 Y0k1 Y0k2 Y0k3];

92 disp(Y0k , ’Y0( k )= ’ )
93

94 //Computing IDFT o f Y0k u s i n g IDIT−FFT :
95

96 Y0k0_0c=real(Y0k0)-(sqrt(-1))*imag(Y0k0);//Y0K0 0c
means complex c on j u ga t e o f Y0k0

97 Y0k0_1c=real(Y0k1)-(sqrt(-1))*imag(Y0k1);//Y0K0 1c
means complex c on j u ga t e o f Y0k1

98 Y0k0_2c=real(Y0k2)-(sqrt(-1))*imag(Y0k2);//Y0K0 2c
means complex c on j u ga t e o f Y0k2

99 Y0k0_3c=real(Y0k3)-(sqrt(-1))*imag(Y0k3);//Y0K0 3c
means complex c on j u ga t e o f Y0k3

100

101 a0=((( Y0k0_3c+Y0k0_1c)*(1))+(( Y0k0_2c+Y0k0_0c)*(1)))

*(1/4);

102 a1=((( Y0k0_3c -Y0k0_1c)*(-1)*(-sqrt(-1)))+(Y0k0_2c -

Y0k0_0c)*(-1))*(1/4);

103 a2=((( Y0k0_3c+Y0k0_1c)*(1) -(Y0k0_2c+Y0k0_0c))*(-1))

*(1/4);

104 a3=(((( Y0k0_3c -Y0k0_1c)*(-1)*(-sqrt(-1))) -((Y0k0_2c -

Y0k0_0c)*(-1)))*(-1))*(1/4);

105

106 a0_real=real(a0);

107 a0_conj =(-1)*(imag(a0));

108 a1_real=real(a1);

109 a1_conj =(-1)*(imag(a1));

110 a2_real=real(a2);

111 a2_conj =(-1)*(imag(a2));

112 a3_real=real(a3);

34



113 a3_conj =(-1)*(imag(a3));

114 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

115 // c on j u ga t e i s taken
116 a0 ’= a0_real+a0_conj

117 a1 ’= a1_real+a1_conj

118 a2 ’= a2_real+a2_conj

119 a3 ’= a3_real+a3_conj

120 a=[a0’,a1’,a2 ’,a3 ’]

121 disp(a, ’ So , the IDFT o f Y0( k ) u s i n g I n v e r s e
Decimation−in−Time Fast Fou r i e r Transform ( IDIT−
FFT) i s y0 ( n )= ’ )

122

123 Y1k0=(X1_0).*( Hk_0);

124 Y1k1=(X1_1).*( Hk_1);

125 Y1k2=(X1_2).*( Hk_2);

126 Y1k3=(X1_3).*( Hk_3);

127 Y1k=[Y1k0 Y1k1 Y1k2 Y1k3];

128 disp(Y1k , ’Y1( k )= ’ )
129

130 //Computing IDFT o f Y1k u s i n g IDIT−FFT :
131 Y1k0_0c=real(Y1k0)-(sqrt(-1))*imag(Y1k0);//Y1K0 0c

means complex c on j u ga t e o f Y1k0
132 Y1k0_1c=real(Y1k1)-(sqrt(-1))*imag(Y1k1);//Y1K0 1c

means complex c on j u ga t e o f Y1k1
133 Y1k0_2c=real(Y1k2)-(sqrt(-1))*imag(Y1k2);//Y1K0 2c

means complex c on j u ga t e o f Y1k2
134 Y1k0_3c=real(Y1k3)-(sqrt(-1))*imag(Y1k3);//Y1K0 3c

means complex c on j u ga t e o f Y1k3
135

136 b0=((( Y1k0_3c+Y1k0_1c)*(1))+(( Y1k0_2c+Y1k0_0c)*(1)))

*(1/4);

137 b1=((( Y1k0_3c -Y1k0_1c)*(-1)*(-sqrt(-1)))+(Y1k0_2c -

Y1k0_0c)*(-1))*(1/4);

138 b2=((( Y1k0_3c+Y1k0_1c)*(1) -(Y1k0_2c+Y1k0_0c))*(-1))

*(1/4);

139 b3=(((( Y1k0_3c -Y1k0_1c)*(-1)*(-sqrt(-1))) -((Y1k0_2c -

Y1k0_0c)*(-1)))*(-1))*(1/4);
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140

141 b0_real=real(b0);

142 b0_conj =(-1)*(imag(b0));

143 b1_real=real(b1);

144 b1_conj =(-1)*(imag(b1));

145 b2_real=real(b2);

146 b2_conj =(-1)*(imag(b2));

147 b3_real=real(b3);

148 b3_conj =(-1)*(imag(b3));

149 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

150 // c on j u ga t e i s taken
151 b0 ’= b0_real+b0_conj

152 b1 ’= b1_real+b1_conj

153 b2 ’= b2_real+b2_conj

154 b=[b0’,b1’,b2 ’,b3 ’]

155 disp(b, ’ So , the IDFT o f Y1( k ) u s i n g I n v e r s e
Decimation−in−Time Fast Fou r i e r Transform ( IDIT−
FFT) i s y1 ( n )= ’ )

156

157 Y2k0=(X2_0).*( Hk_0);

158 Y2k1=(X2_1).*( Hk_1);

159 Y2k2=(X2_2).*( Hk_2);

160 Y2k3=(X2_3).*( Hk_3);

161 Y2k=[Y2k0 Y2k1 Y2k2 Y2k3];

162 disp(Y2k , ’Y2( k )= ’ )
163

164 //Computing IDFT o f Y2k u s i n g IDIT−FFT :
165 Y2k0_0c=real(Y2k0)-(sqrt(-1))*imag(Y2k0);//Y2K0 0c

means complex c on j u ga t e o f Y2k0
166 Y2k0_1c=real(Y2k1)-(sqrt(-1))*imag(Y2k1);//Y2K0 1c

means complex c on j u ga t e o f Y2k1
167 Y2k0_2c=real(Y2k2)-(sqrt(-1))*imag(Y2k2);//Y2K0 2c

means complex c on j u ga t e o f Y2k2
168 Y2k0_3c=real(Y2k3)-(sqrt(-1))*imag(Y2k3);//Y2K0 3c

means complex c on j u ga t e o f Y2k3
169

170 c0=((( Y2k0_3c+Y2k0_1c)*(1))+(( Y2k0_2c+Y2k0_0c)*(1)))
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*(1/4);

171 c1=((( Y2k0_3c -Y2k0_1c)*(-1)*(-sqrt(-1)))+(Y2k0_2c -

Y2k0_0c)*(-1))*(1/4);

172 c2=((( Y2k0_3c+Y2k0_1c)*(1) -(Y2k0_2c+Y2k0_0c))*(-1))

*(1/4);

173 c3=(((( Y2k0_3c -Y2k0_1c)*(-1)*(-sqrt(-1))) -((Y2k0_2c -

Y2k0_0c)*(-1)))*(-1))*(1/4);

174

175 c0_real=real(c0);

176 c0_conj =(-1)*(imag(c0));

177 c1_real=real(b1);

178 c1_conj =(-1)*(imag(c1));

179 c2_real=real(c2);

180 c2_conj =(-1)*(imag(c2));

181 c3_real=real(c3);

182 c3_conj =(-1)*(imag(c3));

183 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

184 // c on j u ga t e i s taken
185 c0 ’= c0_real+c0_conj

186 c1 ’= c1_real+c1_conj

187 c2 ’= c2_real+c2_conj

188 c3 ’= c3_real+c3_conj

189 c=[c0’,c1’,c2 ’,c3 ’]

190 disp(c, ’ So , the IDFT o f Y2( k ) u s i n g I n v e r s e
Decimation−in−Time Fast Fou r i e r Transform ( IDIT−
FFT) i s y2 ( n )= ’ )

191

192 Y3k0=(X3_0).*( Hk_0);

193 Y3k1=(X3_1).*( Hk_1);

194 Y3k2=(X3_2).*( Hk_2);

195 Y3k3=(X3_3).*( Hk_3);

196 Y3k=[Y3k0 Y3k1 Y3k2 Y3k3];

197 disp(Y3k , ’Y3( k )= ’ )
198

199 //Computing IDFT o f Y3k u s i n g IDIT−FFT :
200 Y3k0_0c=real(Y3k0)-(sqrt(-1))*imag(Y3k0);//Y3K0 0c

means complex c on j u ga t e o f Y3k0
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201 Y3k0_1c=real(Y3k1)-(sqrt(-1))*imag(Y3k1);//Y3K0 1c
means complex c on j u ga t e o f Y3k1

202 Y3k0_2c=real(Y3k2)-(sqrt(-1))*imag(Y3k2);//Y3K0 2c
means complex c on j u ga t e o f Y3k2

203 Y3k0_3c=real(Y3k3)-(sqrt(-1))*imag(Y3k3);//Y3K0 3c
means complex c on j u ga t e o f Y3k3

204

205 d0=((( Y3k0_3c+Y3k0_1c)*(1))+(( Y3k0_2c+Y3k0_0c)*(1)))

*(1/4);

206 d1=((( Y3k0_3c -Y3k0_1c)*(-1)*(-sqrt(-1)))+(Y3k0_2c -

Y3k0_0c)*(-1))*(1/4);

207 d2=((( Y3k0_3c+Y3k0_1c)*(1) -(Y3k0_2c+Y3k0_0c))*(-1))

*(1/4);

208 d3=(((( Y3k0_3c -Y3k0_1c)*(-1)*(-sqrt(-1))) -((Y3k0_2c -

Y3k0_0c)*(-1)))*(-1))*(1/4);

209

210 d0_real=real(d0);

211 d0_conj =(-1)*(imag(d0));

212 d1_real=real(d1);

213 d1_conj =(-1)*(imag(d1));

214 d2_real=real(d2);

215 d2_conj =(-1)*(imag(d2));

216 d3_real=real(d3);

217 d3_conj =(-1)*(imag(d3));

218 // F i n a l l y , we w i l l add the r e a l pa r t and the
imag inary pa r t whose complex

219 // c on j u ga t e i s taken
220 d0 ’= d0_real+d0_conj

221 d1 ’= d1_real+d1_conj

222 d2 ’= d2_real+d2_conj

223 d3 ’= d3_real+d3_conj

224 d=[d0’,d1’,d2 ’,d3 ’]

225 disp(d, ’ So , the IDFT o f Y3( k ) u s i n g I n v e r s e
Decimation−in−Time Fast Fou r i e r Transform ( IDIT−
FFT) i s y3 ( n )= ’ )

226 w=[a 0 0 0 0 0 0];

227 x=[0 0 b 0 0 0 0];

228 y=[0 0 0 0 c 0 0];
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229 z=[0 0 0 0 0 0 d];

230 disp(z,y,x,w, ’ A f t e r ov e r l app ing , the s e qu en c e s w i l l
be s e en as f o l l o w s : ’ )

231 yn=w+x+y+z;

232 disp(yn, ’ The output : y ( n )= ’ )

39



Experiment: 10

Implement Impulse Invariant
Method

Scilab code Solution 10.0 Experiment Number 10

1 //AIM: Implement Impul se I n v a r i a n t method
2

3 // Find out H( z ) u s i n g impu l s e i n v a r i a n c e s method at
5Hz sampl ing f r e qu en cy

4 // from H( s ) where H( s ) =1/( s+1) ( s+2)
5

6 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
7 //OS windows 10
8 clc;

9 clear;

10 s=%s;

11 s2=-2;

12 s1=-1;

13 d1=(s-s1);

14 p2=(s-s2);

15 if (s1) then // When po l e=−1
16 s1=-1;

17 s2=-2;

18 s=s1;
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19 d2=(s-s2);

20 num1 =1/d2; // Value o f A1
21 h1=syslin( ’ c ’ , num1/d1)

22 end

23 disp(h1)

24 disp(num1 , ’ v a l u e o f A1= ’ )
25 if (s2) then // When po l e=−2
26 s1=-1;

27 s2=-2;

28 s=s2;

29 p1=(s-s1);

30 num2 =1/p1; // Value o f A2
31 h2=syslin( ’ c ’ , num2/p2)

32 end

33 disp(h2)

34 disp(num2 , ’ Value o f A2= ’ )
35 Hs=(h1)+(h2);

36 disp(Hs, ’ T r an s f e r f u n c t i o n o f ana l og f i l t e r H( s )= ’ )
37 //Obtain the Z−t r an s f o rm us i ng impu l s e i n v a r i a n c e

t r a n s f o rma t i o n equa t i on
38 // 1/( s−pk )=1/[1− exp ( pk∗Ts ) ∗Zˆ(−1) ]
39 Fs=5;

40 Ts=1/Fs;

41 disp( ’ s e c ’ ,Ts , ’ Sampl ing t ime Ts= ’ )
42 //we have p o l e s at s1=−1 and s2=−2
43 Z=poly(0,”Z”)
44 // 1/( s+1)=a ;We c o n s i d e r
45 a=num1/(1-exp(s1*(Ts))*Z^(-1));

46 // 1/( s+2)=b ;We c o n s i d e r
47 b=num2/(1-exp(s2*(Ts))*Z^(-1));

48 disp(a, ’ 1/ s+1= ’ )
49 disp(b, ’ 1/ s+2= ’ )
50 //The Tran s f e r f u n c t i o n o f d i g i t a l f i l t e r i s g i v en

by ,
51 //H(Z)= ( k=1)ˆN(Ak/(1− e ˆ( pk∗Ts ) ∗Zˆ(−1) )
52 //H(Z)=A1/1−exp ( p1∗Ts ) ∗Zˆ(−1)+A2/1−exp ( p1∗Ts ) ∗Zˆ(−1)
53 Hz=(a+b);

54 disp(Hz, ’ The r e q u i r e d t r a n s f e r f u n c t i o n f o r d i g i t a l
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I IR f i l t e r H(Z)= ’ )
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Experiment: 11

To Design Butterworth Filter
With Minimum Readymade
Scilab Functions

Scilab code Solution 11.0 Experiment Number 11

1 //AIM: To d e s i g n Butte rworth f i l t e r with minimum
readymade S c i l a b f u n c t i o n s

2

3 //To compute the o rd e r and the p o l e s o f Butte rworth
low pas s f i l t e r u s i n g

4 // B i l i n e a r t r a n s f o rma t i o n (ASSUME T=1SEC) ;
5 // At t enua t i on i n passband =1.93dB
6 // At t enua t i on i n stopband =13.97dB
7 // Passband edge f r e qu en cy =0.2
8 // Stopbandband edge f r e qu en cy =0.6
9

10 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
11 //OS windows 10
12 clc;

13 clear;

14 s=poly(0,” s ”)
15 T=1;
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16 Ap =1.93; // i n dB
17 As =13.97; // i n dB
18 wp =0.2*( %pi)

19 ws =0.6*( %pi)

20 ohmp =2/T*(tan(wp/2))

21 ohms =2/T*(tan(ws/2))

22 //ORDER CALCULATION :
23 N=(0.5) *(log ((((10^(0.1* As)) -1) /((10^(0.1* Ap)) -1))))

/(log(ohms/ohmp))

24

25 Nr=int (N)

26 x=N-int(N)

27 if(x>0)

28 Nr=Nr+1

29 ohmc=(ohmp /(10^(0.1* Ap) -1)^(1/(2* Nr)))

30 // Ca l c u l a t i o n o f p o l e s
31 i=0:1:Nr -1;

32 pi_plus=ohmc*exp(%i*(Nr+2*i+1)*(%pi)/(2*Nr))

33 pi_minus=-ohmc*exp(%i *(2+2.*i+1)*(%pi)/(2*Nr))

34 disp(wp, ’wp= ’ )
35 disp(ws, ’ ws= ’ )
36 disp(ohmp , ’ ohmp= ’ )
37 disp(ohms , ’ ohms= ’ )
38 disp(N, ’N= ’ )
39 disp(Nr, ’ Roundof f va l u e o f N now denoted as Nr = ’ )
40 disp(ohmc , ’ Cu t o f f f r e qu en cy : ohmc= ’ )
41 disp( ’ D i s p l a y i n g the p o l e s ’ )
42 disp(pi_plus , ’ p i p l u s= ’ )
43 disp(pi_minus , ’ p i m inus= ’ )
44 h2=zeros (1,2)

45 h=ohmc/(s-( -0.53 -0.53*%i))

46 h1=ohmc/(s -( -0.53+0.53* %i))

47 h2=h*h1;

48 disp(h,h1, ’Now the ana l og t r a n s f e r f u n c t i o n H( s ) i s
the m u l t i p l i c a t i o n o f the f o l l o w i n g two terms : ’ )
;

49 disp(h2, ’ A f t e r mu l t i p l i c a t i o n ,H( s )= ’ )
50 g=numer(h2);
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51 disp(g, ’ Numerator o f the ana l og t r a n s f e r f u n c t i o n= ’ )
52 // Obta in ing H( z ) u s i n g B i l i n e a r Trans f o rmat i on

Method :
53 z=poly(0,” z ”)
54 s=(2/T)*((z-1)/(z+1));// B i l i n e a r Trans f o rmat i on

Method
55 disp( ’ Type resume in Conso l e ’ )
56 pause

57 a=0.5618 +1.06*s+s^2;

58 b=(1/a)

59 c=0.5645360*b;

60 disp(c, ’ The d i g i t a l t r a n s f e r f u n c t i o n H( z )= ’ )
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Experiment: 12

To Design Chebyshev Filter
With Minimum Readymade
Scilab Functions.

Scilab code Solution 12.0 Experiment Number 12

1 //AIM: To d e s i g n Chebyshev f i l t e r with minimum
readymade S c i l a b f u n c t i o n s

2

3 // Des ign o f low pas s 1 rad / s e c bandwidth Chebyshev
f i l t e r

4 // Accep tab l e passband r i p p l e=2 db
5 // cut o f f r ad i an f r e qu en cy 1 r ad i an / s e c
6 // s top band a t t e nu a t i o n o f 20db or g r e a t e r beyond

1 . 3 r ad i an / s e c
7

8 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
9 //OS windows 10
10 clc;

11 clear;

12 //Given cut−o f f f r e qu en cy i s 1 rad / s e c . This means
tha t i t i s a no rma l i z ed low

13 // pas s Chebyshev f i l t e r
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14 fc=1; // from the above qu e s t i o n
15 Ap=2; // from the above qu e s t i o n
16 As=20; // from the above qu e s t i o n
17 ohms =1.3; // from the above qu e s t i o n
18 ohmp =1; // I t i s a no rma l i z ed f i l t e r . Hence the va lu e

i s 1 rad / s e c
19

20 // St ep s f o r c a l c u l a t i o n o f
21 a=(0.1*2)

22 b=10^a

23 c=b-1

24 episelon=c^(1/2)

25 disp(episelon ,” =”)
26

27 // St ep s f o r c a l c u l a t i o n o f o rd e r
28 d=(-20)*(( log(episelon)/log (10)))

29 e=(20) *(log(ohms)/log (10))

30 f=6+e

31 g=26+d

32 N=g/f

33 Nr=int (N)

34 x=N-int(N)

35 if(x>0)

36 Nr=Nr+1

37 //N=(((−20) ∗ l o g ( e p i s e l o n ) )+6+20) /(6+20∗( l o g ( ohms ) ) )
38 D=-20; // g i v en i n db
39 //N=−(20∗ l o g 10 ( e p i s e l o n ) ) −6(N−1)−(20∗ l o g ( ohms ) )
40 h1=(( episelon)^2)

41 h2=1+h1

42 h3=h2 ^(1/2)

43 h4=h3+1

44 g=( episelon)

45 h5=h4/g

46 beta=(h5)^(1/Nr)

47 disp(N,”N=”)
48 disp(Nr,”The round−o f f v a l u e o f N(now c a l l e d as Nr )=

”)
49 disp(beta ,” =”)
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50

51 // f o r the d e t e rm ina t i o n o f p o l e s we have
52 r=(ohmp)*((( beta ^2) -1)/(2* beta))

53 disp(r,”The minor a x i s o f the e l l i p s e ( r )=”)
54 R=ohmp *(( beta ^2+1) /(2* beta))

55 disp(R,”The major a x i s o f the e l l i p s e (R)=”);
56 // t h e t a i =(%pi /2) +((2 i+%pi ) /2∗N) // i =0123
57 // f o r i =0
58 theta0 =((%pi /2) +((2*0* %pi+%pi)/(2*4)))

59 disp(theta0 ,” th e t a0=”)
60 // f o r i =1
61 theta1 =((%pi /2) +((2*1* %pi+%pi)/(2*4)))

62 disp(theta1 ,” th e t a1=”)
63 // f o r i =2
64 theta2 =((%pi /2) +((2*2* %pi+%pi)/(2*4)))

65 disp(theta2 ,” th e t a2=”)
66 // f o r i =3
67 theta3 =((%pi /2) +((2*3* %pi+%pi)/(2*4)))

68 disp(theta3 ,” th e t a3=”)
69 // the po l e p o s i t i o n i s g i v en by
70 // sp=r ∗ co s ( t h e t a i )+j s i n ( t h e t a i )
71 i=0:1:Nr -1

72 //Computing r e a l and imag inary pa r t o f s0 , s1 , s2 , s3
73 h6=((r)*(cos(theta0))) //Computing r e a l pa r t o f s0
74 h7=(%i)*(R)*(sin(theta0)) //Computing imag inary pa r t

o f s0
75 s0=h6+h7; //Combining r e a l and imag inary pa r t o f s0
76 disp(s0,” s0=”)
77 h8=((r)*(cos(theta1))) //Computing r e a l pa r t o f s1
78 h9=(%i)*(R)*(sin(theta1)) //Computing imag inary pa r t

o f s1
79 s1=h8+h9; //Combining r e a l and imag inary pa r t o f s1
80 disp(s1,” s1=”)
81 h10 =((r)*(cos(theta2))) //Computing r e a l pa r t o f s2
82 h11=(%i)*(R)*(sin(theta2)) //Computing imag inary

pa r t o f s2
83 s2=h10+h11; //Combining r e a l and imag inary pa r t o f

s2

48



84 disp(s2,” s2=”)
85 h12 =((r)*(cos(theta3))) //Computing r e a l pa r t o f s3
86 h13=(%i)*(R)*(sin(theta3)) //Computing imag inary

pa r t o f s3
87 s3=h12+h13; //Combining r e a l and imag inary pa r t o f

s13
88 disp(s3,” s3=”)
89

90 // Ca l c u l a t i o n o f t r a n s f e r f u n c t i o n :
91 s=poly(0,” s ”)
92 h=1/((s-(s0))*(s-(s1))*(s-(s2))*(s-(s3)))

93 disp(h,”h=”)
94 disp( ’Now type resume and p r e s s e n t e r i n the Conso l e

window ’ )
95 pause

96 //Now va lu e o f b0 i s r e q u i r e d which i s no th ing but
the va lu e o f the c on s t an t

97 // term in the denominator o f h ( ob ta i n ed by s e e i n g
the c a l c u l a t e d va lu e i n the

98 // c o n s o l e window by i n s e r t i n g a ’ pause ’ i n the
program )

99 b0 =0.2057651;

100 // Also we s e e i n the Conso l e window tha t the rounded
va lu e o f the o rd e r i s 4

101 // and s i n c e 4 i s an even number , so the fo rmu la f o r
c a l c u l a t i o n o f i w i l l be

102 // i=b0 /( s q r t (1+ ˆ2) )
103 i=b0/(sqrt (1+( episelon)^2))

104 disp(i, ’ i= ’ )
105 Hs=i*h// Ca l c u l a t e d va lu e o f Ha( s )
106 disp(Hs, ’ The r e q u i r e d t r a n s f e r f u n c t i o n Ha( s )= ’ ) //

D i s p l a y i n g the c a l c u l a t e d va lu e o f the t r a n s f e r
f u n c t i o n
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Experiment: 13

Designing Two Stage
Decimator

Scilab code Solution 13.0 Experiment Number 13

1 //AIM: To implement a two s t a g e dec imato r f o r the
f o l l o w i n g s p e c i f i c a t i o n s :

2 // Sampl ing r a t e o f the input s i g n a l =20 ,000 Hz
3 //D=100 , Passband=0 to 40Hz , T r a n s i t i o n Band=40 to 50

Hz , Passband r i p p l e =0.02 , Stopband r i p p l e =0.002
4

5 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
6 //OS windows 10
7 clc;

8 clear;

9

10 // Let us c o n s i d e r the combinat ion 25∗4
11 D1=25;

12 D2=4;

13 // such tha t D=D1∗D2
14 F0 =20000; //Fo i s the sampl ing f r e qu en cy ( or sampl ing

r a t e ) o f the input s i g n a l ( g i v en i n the qu e s t i o n )
15 Fp=40; //Fp i s the passband edge f r e qu en cy ( g i v en i n

the qu e s t i o n )
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16 Fstop =50; // Fstop i s the stopband edge f r e qu en cy (
g i v en i n the qu e s t i o n )

17 F1=F0/D1;

18 F2=F1/D2;

19 disp(” Hertz ”,F0 ,”The g i v en va lu e o f F0=”)
20 disp(” Hertz ”,F1 ,”The c a l c u l a t e d va lu e o f F1=”)
21 disp(” Hertz ”,F2 ,”The c a l c u l a t e d va lu e o f F2=”)
22 Dp =0.02;

23 Ds =0.002;

24 // c a l c u l a t i o n s f o r s t a g e I . . .
25 // Step 1 : Passband :0<=F<=Fp tha t means 0<= F<= 40

Hertz
26 // Step 2 : Stopband : Fi−Fstop<=F<=F( i −1) /2
27 //Here i=1 f o r Stage−I
28 LROS1=F1-Fstop; //Here , LROS1=Lowest l i m i t o f

stopband f o r Stage−I
29 HROS1=F0/2; //Here , HROS1=Highe s t l i m i t o f stopband

f o r Stage−I
30 disp(” Hertz ”,LROS1 ,”The l owe s t l i m i t o f stopband ( f o r

Stage−I ) =”)
31 disp(” Hertz ”,HROS1 ,”The h i g h e s t l i m i t o f stopband (

f o r Stage−I ) =”)
32 disp(” Hertz ”,HROS1 ,”<=F<=”,” Hertz ”,LROS1 ,”So the

range o f stopband f o r Stage I i s : ” ,)
33 Tmax1=LROS1;

34 Tmin1=Fp;

35 DF1=(Tmax1 -Tmin1)/F0

36 Dp1=(Dp/2);

37 Ds1=Ds;

38 disp( ’ Hertz ’ ,DF1 ,”The c a l c u l a t e d va lu e o f F1 =”)
39 disp(Dp1 ,”The c a l c u l a t e d va lu e o f p1 =”)
40 disp(Ds1 ,”The va lu e o f s1 = s =”)
41 N1=((( -10* log10(Dp1*Ds1) -13) /(14.6* DF1))+1); //

Computing the f i l t e r l e n g t h (N1) o f Stage−I
42 disp(N1,” F i l t e r l eng th , N1=”)
43 NR1=int(N1);// Ex t r a c t i n g on ly the i n t e g e r pa r t from

N1
44 x1=N1-int(N1);// x1 i s the dec ima l pa r t o f o v e r a l l N1
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45 if (x1 >0) // I f the dec ima l pa r t i s g r e a t e r than z e r o
46 NR1=NR1+1 //Then inc r ement the e x t r a c t e d i n t e g e r

pa r t i . e . NR1 by 1 to ge t a round−o f f va l u e
o f the l e n g t h o f f i l t e r o f Stage−I

47 disp(NR1 ,” F i l t e r l e n g t h N1( round−o f f v a l u e ) now known
as NR1=”)

48 // c a l c u l a t i o n s f o r s tage−I I . . .
49 // Step 1 : Passband :0<=F<=Fp tha t means 0<= F<= 40

Hertz
50 // Step 2 : Stopband : Fi−Fstop<=F<=F( i −1) /2
51 //Here i=2 f o r Stage−I I
52 disp(”−−−−−−−−−−−−−−Now d i s p l a y i n g the v a l u e s f o r

s tage−I I−−−−−−−−−−−−−−”)
53 LROS2=F2-Fstop; //Here , LROS2=Lowest l i m i t o f

stopband f o r Stage−I I
54 HROS2=F1/2 //Here , HROS2=Highe s t l i m i t o f stopband

f o r Stage−I I
55 disp(” Hertz ”,LROS2 ,”The l owe s t l i m i t o f stopband ( f o r

Stage−I I ) =”)
56 disp(” Hertz ”,HROS2 ,”The h i g h e s t l i m i t o f stopband (

f o r Stage−I I ) =”)
57 disp(” Hertz ”,HROS2 ,”<=F<=”,” Hertz ”,LROS2 ,”So the

range o f stopband f o r Stage−I I i s : ” ,)
58 // I f t r a n s i t i o n band i s g i v en i n the que s t i on , then

a lways g i v en t r a n s i t i o n width i s a p p l i c a b l e f o r
the second s t a g e .

59 //Given t r a n s i t i o n width i s 40Hz to 50Hz .
60 // I t i n d i c a t e s tha t f o r t h i s s tage , the stopband

shou ld s t a r t at 50Hz .
61 a=50;

62 disp(” Hertz ”,a,”The new va lu e o f the l owe s t l i m i t o f
stopband ( f o r Stage−I I ) =”)

63 disp(” Hertz ”,HROS2 ,”The h i g h e s t l i m i t o f stopband i s
re−wr i t t e n ( f o r Stage−I I ) which i s =”)

64 disp(” Hertz ”,HROS2 ,”<=F<=”,” Hertz ”,a,”So the new
mod i f i e d range o f stopband f o r Stage−I I i s : ” ,)

65 Tmax2 =50;

66 Tmin2=Fp;
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67 DF2=(Tmax2 -Tmin2)/F1

68 Dp2=(Dp/2);

69 Ds2=Ds;

70 disp( ’ Hertz ’ ,DF2 ,”The c a l c u l a t e d va lu e o f F2 =”)
71 disp(Dp2 ,”The c a l c u l a t e d va lu e o f p2 =”)
72 disp(Ds2 ,”The va lu e o f s2 = s1 = s =”)
73 N2=((( -10* log10(Dp2*Ds2) -13) /(14.6* DF2))+1);//

Computing the f i l t e r l e n g t h (N2) o f Stage−I I
74 disp(N2,” F i l t e r l eng th , N2=”)
75 NR2=int(N2);// Ex t r a c t i n g on ly the i n t e g e r pa r t from

N2
76 x2=N2-int(N2);//x i s the dec ima l pa r t o f o v e r a l l N2
77 if (x2 >0) // I f the dec ima l pa r t i s g r e a t e r than z e r o
78 NR2=NR2+1 //Then inc r ement the e x t r a c t e d i n t e g e r

pa r t i . e . NR2 by 1 to ge t a round−o f f va l u e
o f the l e n g t h o f f i l t e r o f Stage−I I

79 disp(NR2 ,” F i n a l f i l t e r l eng th , N2( round−o f f v a l u e ) now
known as NR2=”)

80 // Ca l c u l a t i o n o f MPS( Mu l t i p l i c a t i o n s per second ) and
TSR( Tota l S t o r ag e r equ i r emen t ) . . .

81 //MPS= o f [ i =1 to I ] ( Ni∗Fi )
82 //Here I=Tota l No . o f s t a g e s=2
83 MPS=(NR1*F1)+(NR2*F2);

84 disp(MPS ,”The va lu e o f No . o f MPS( Mu l t i p l i c a t i o n s
per second )=”)

85 //TSR= o f [ i =1 to I ] ( Ni )
86 //Here I=Tota l No . o f s t a g e s=2
87 TSR=NR1+NR2

88 disp(TSR ,”The va lu e o f TSR( Tota l s t o r a g e r equ i r ement
)=”)
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Experiment: 14

Compute Dft Using Matrix
Approach And Then Using Dft
Properties.

Scilab code Solution 14.0 Experiment Number 14

1 //Compute DFT us i ng matr ix approach & then u s i n g DFT
p r o p e r t i e s .

2 // ( i ) : x ( n ) ={1 ,2 ,3 ,4 ) , f i n d DFT X( k )
3 // ( i i ) : Us ing r e s u l t s ob ta i n ed i n pa r t ( i ) & not

o th e rw i s e ,
4 // f i n d DFT o f f o l l o w i n g s e qu en c e s :
5 // x1 ( n ) ={4 ,1 ,2 ,3}
6 // x2 ( n ) ={2 ,3 ,4 ,1}
7 // x3 ( n ) ={3 ,4 ,1 ,2}
8 // x4 ( n ) ={4 ,6 ,4 ,6}
9 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
10 //OS windows 10
11 clc;

12 clear;

13 // Let us f i r s t d e f i n e the W4 matr ix
14 W4=[1 1 1 1 ;1 -sqrt(-1) -1 sqrt(-1);1 -1 1 -1;1

sqrt(-1) -1 -sqrt(-1)];
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15 disp(W4, ’W4= ’ )
16 //Now l e t us d e f i n e the input s equence
17 xn =[1;2;3;4]; //The input s equence x ( n ) has been

a r ranged as a column matr ix
18 //DFT i s ob ta i n ed by mu l t i p l y i n g the tw i dd l e matr ix

W4 and the input s equence
19 Xk=W4*xn;

20 disp(Xk, ’DFT : X( k )= ’ )
21 disp( ’ Type resume in c o n s o l e and p r e s s e n t e r ’ )
22 pause

23 X0=10

24 X1= -2+2* sqrt(-1);

25 X2=-2

26 X3=-2-2*sqrt(-1);

27

28 // ( i i ) : x1 ( n ) ={4 ,1 ,2 ,3} and x ( n ) ={1 ,2 ,3 ,4}
29 // x1 ( n ) i s ob ta i n ed by d e l a y i n g x ( n ) by 1 p o s i t i o n

which means x1 ( n )=x (n−1)
30 // Accord ing to the c i r c u l a r t ime s h i f t p r op e r t y : x (

n− l ) g i v e s DFT as X( k ) ∗ eˆ(− j ∗2∗%pi∗k∗ l /N)
31 //But l=−1
32 a1=cos(0) -(sqrt(-1)*sin(0));

33 //So , f o r k=0 ,
34 X10=X0.*real(a1)-X0.*( sqrt(-1)*imag(a1))

35 disp(X10 , ’X1 ( 0 )= ’ )
36 //So , f o r k=1 ,
37 b1=int(cos(%pi/2)) -(sqrt(-1)*sin(%pi/2))

38 X11=X1*b1;

39 disp(X11 , ’X1 ( 1 )= ’ )
40 // For k=2 ,
41 c1=int(cos(%pi))-int((sqrt(-1)*sin(%pi)));

42 X12=X2*c1;

43 disp(X12 , ’X1 ( 2 )= ’ )
44 // For k=3 ,
45 d1=int(cos ((3* %pi)/2))-int((sqrt(-1)*sin ((3* %pi)/2))

);

46 X13=X3*d1;

47 disp(X13 , ’X1 ( 3 )= ’ )
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48 disp({,X10 ,X11 ,X12 ,X13 ,}, ’ So , X1( k )= ’ )
49

50 // ( i i i ) : Now moving ahead to f i n d X2( k )
51 // x2 ( n ) ={2 ,3 ,4 ,1} and x ( n ) ={1 ,2 ,3 ,4}
52 // x2 ( n ) i s ob ta i n ed by advanc ing x ( n ) by 1 p o s i t i o n

which means x2 ( n )=x ( n+1)
53 // Accord ing to the c i r c u l a r t ime s h i f t p r op e r t y : x (

n− l ) g i v e s DFT as X( k ) ∗ eˆ(− j ∗2∗%pi∗k∗ l /N)
54 //But l=2
55 a2=cos(0)+(sqrt(-1)*sin(0));

56 //So , f o r k=0 ,
57 X20=X0.*real(a2)-X0.*( sqrt(-1)*imag(a2))

58 disp(X20 , ’X2 ( 0 )= ’ )
59 //So , f o r k=1 ,
60 b2=int(cos(%pi/2))+(sqrt(-1)*sin(%pi/2))

61 X21=X1*b2;

62 disp(X21 , ’X2 ( 1 )= ’ )
63 // For k=2 ,
64 c2=int(cos(%pi))+int((sqrt(-1)*sin(%pi)));

65 X22=X2*c2;

66 disp(X22 , ’X2 ( 2 )= ’ )
67 // For k=3 ,
68 d2=int(cos ((3* %pi)/2))+int((sqrt(-1)*sin ((3* %pi)/2))

);

69 X23=X3*d2;

70 disp(X23 , ’X2 ( 3 )= ’ )
71 disp({,X20 ,X21 ,X22 ,X23 ,}, ’ So , X2( k )= ’ )
72

73 // ( i v ) : Now moving ahead to f i n d X3( k )
74 // x3 ( n ) ={3 ,4 ,1 ,2} and x ( n ) ={1 ,2 ,3 ,4}
75 // x3 ( n ) i s ob ta i n ed by s h i f t i n g x ( n ) by 2 p o s i t i o n s

which means x3 ( n )=x [ n(+/−) 2 ]
76 // Accord ing to the c i r c u l a r t ime s h i f t p r op e r t y : x [

n(+/−) 2 ] g i v e s DFT as X( k ) ∗ eˆ(− j ∗2∗%pi∗k∗ l /N)
77 a3=cos(0)+(sqrt(-1)*sin(0));

78 //So , f o r k=0 ,
79 X30=X0.*real(a3)-X0.*( sqrt(-1)*imag(a3))

80 disp(X30 , ’X3 ( 0 )= ’ )
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81 //So , f o r k=1 ,
82 b3=int(cos(%pi)) -(sqrt(-1)*sin(%pi))

83 X31=X1*b3;

84 disp(X31 , ’X3 ( 1 )= ’ )
85 // For k=2 ,
86 c3=int(cos (2*%pi))-int((sqrt(-1)*sin(2* %pi)));

87 X32=X2*c3;

88 disp(X32 , ’X3 ( 2 )= ’ )
89 // For k=3 ,
90 d3=int(cos (3*%pi))-int((sqrt(-1)*sin(3* %pi)));

91 X33=X3*d3;

92 disp(X33 , ’X3 ( 3 )= ’ )
93 disp({,X30 ,X31 ,X32 ,X33 ,}, ’ So , X3( k )= ’ )
94

95 // ( v ) : Now moving ahead to f i n d X4( k )
96 // x4 ( n ) ={4 ,6 ,4 ,6} and x ( n ) ={1 ,2 ,3 ,4}
97 //Both a r e r e l a t e d as x4 ( n )=x ( n )+x [ n(+/−) 2 ]
98 // Using h a l f p e r i o d s h i f t p roper ty , X4( k )=X( k ) +[(−1)

ˆk ] ∗X( k )
99 // For k=0 ,

100 X40=X0+[(-1) ^0]*X0

101 disp(X40 , ’X40= ’ )
102 // For k=1 ,
103 X41=X1+[(-1) ^1]*X1

104 disp(X41 , ’X41= ’ )
105 // For k=2 ,
106 X42=X2+[(-1) ^2]*X2

107 disp(X42 , ’X42= ’ )
108 // For k=3 ,
109 X43=X3+[(-1) ^3]*X3

110 disp(X43 , ’X43= ’ )
111 disp({,X40 ,X41 ,X42 ,X43 ,}, ’ So , X4( k )= ’ )
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