Scilab Manual for
Audio and Speech Processing Part 1
by Prof Muralikrishna H
Electronics Engineering
Manipal Institute of Technology®

Solutions provided by
Prof Muralikrishna H
Electronics Engineering
Manipal Institute of Technology

February 15, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”"Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions 3
1 Basic Operations on Signals 4
2 Concatenation of Speech Signals 7
3 Finding the Resonating Frequency of a Tuning Fork 10

List of Experiments

Solution 1.1
Solution 1.2

Solution 1.3
Solution 1.4
Solution 2.1
Solution 2.2
Solution 2.3
Solution 3.1
Solution 3.2
Solution 3.3

Generating a sin wave 4
Program to compare two sine waves with different

frequencies 4
Program to generate squarewave 5)
Program to add sin and squarewave 6
Program to concatenate speech signals 7
Concatenating into Stereo file 8

Stereo to Mono conversion 8
Resonating Freq using spectrum 10
Resonating Freq in mixed frequency signal 11
Resonating Freq using Autocorrelation 12

© 00 J O U i W N

o T e S e S G S Gy SO
S O WO NN = O

Experiment: 1

Basic Operations on Signals

Scilab code Solution 1.1 Generating a sin wave

//Generating a sine wave

//

//OS: windows 7

//Scilab: 5.5.2

//

clc;

close;

clear;

£f=100;

Fs=44000; //sampling frequency
t=0:1/Fs:.02; // 2 cycles only
y=sin (2x%pi*f*t);

plot (y);

title(’Sine wave’)

xlabel ('sample number’) ;
ylabel ("amplitude ') ;

Scilab code Solution 1.2 Program to compare two sine waves with differ-
ent frequencies

© 00 J O Ut = W N

NN NN NDNDNDN F /= = = s s
N O U W N O OO0 Ot W+~ O

=W N =

//Program to compare two sine waves with different

frequencies .
//
//OS: windows 7
//Scilab: 5.5.2

//

clc;

close;

clear;

£1=100;

F=4400; //sampling frequency
t=0:1/F:.02;

y=sin (2x%pi*flxt);

£2=200;
z=2%sin (2*pi*f2*t) ;

subplot (211)

plot (y);

xlabel ('sample number’) ;
ylabel ("amplitude ') ;

subplot (212)

plot(z)

xlabel ('sample number’);
ylabel ("amplitude ') ;

Scilab code Solution 1.3 Program to generate squarewave

//Program to generate squarewave

//
//OS: windows 7

//Scilab: 5.5.2

© 0o N O Ot

10
11
12

© 00 N O U i W N

I I R N R e e e e N e e e T e
W N = O O© 00 J O Ui W NN = O

//

£=100;

Fs=44000; //sampling frequency
t=0:1/Fs:.02; // 2 cycles only
y=squarewave (2*x}pi*fxt);

plot (y);

xlabel ('sample number’) ;
ylabel ("amplitude ') ;

Scilab code Solution 1.4 Program to add sin and squarewave

//Program to add sin and squarewave
//

//OS: windows 7

//Scilab: 5.5.2

//

clc;

close;

clear;

£=100;

Fs=44000; //sampling frequency
t=0:1/Fs:.02; // 2 cycles only
y=squarewave (2x%pi*f*t);

z=sin (2xY%pixfxt);

subplot (311)

plot (y)

title(’Suqre wave’)

subplot (312)

plot(z)

title(’Sine wave’)

zz=y+z; // Adding two signals
subplot (313)

plot (zz);

title(’Result of adding sin and square

wave)

© 00 N O U i W N

10

11
12
13
14
15
16

Experiment: 2

Concatenation of Speech
Signals

Scilab code Solution 2.1 Program to concatenate speech signals

//This code Reads 2 audio files and coccatenates
them .

//

//OS: windows 7

//Scilab: 5.5.2

//

clc;

close;

clear;

[y,Fs] = wavread(’C:\ Users\ACER\ Desktop\Number_1.wav
"); // reading the audiofile 1

[x,Fs]l= wavread (’C:\ Users\ACER\ Desktop\Number_2.wav’
);// reading the audiofile 2

z=[y,x];

sound (z,Fs)// playing concatenated file.

t=(0:1length(z)-1)*1/Fs;

plot (t,z)

title(’Concatenated Speech signal waveform ')

xlabel ('Time in seconds’)

17

© 00 J O U i W N

10

11

12

O J O O i W N

ylabel (" Amplitude ")

Scilab code Solution 2.2 Concatenating into Stereo file

//This Program Reads 2 audio files and coccatenates
them into a stereo file.

//

//OS: windows 7

//Scilab: 5.5.2

//

clc;

close;

clear;

[y,Fs] = wavread (’C:\ Users\ACER\ Desktop\Number_1.wav
’); // reading the audiofile 1

[x,Fs]l= wavread (’C:\ Users\ACER\ Desktop\Number_2.wav’
);// reading the audiofile 2

z=[x;y]l; // Concatenating. //Two files must be of
same length

sound (z,Fs)// playing concatenated file. // Observe
two seperate signals played together.

Scilab code Solution 2.3 Stereo to Mono conversion

//This Program Reads a stereo file and converts it
in to individual files.

//

//OS: windows 7

//Scilab: 5.5.2

//

clc;

close;

clear;

10
11
12

13
14
15
16
17
18
19
20
21

22
23
24
25
26

[y,Fs] = wavread(’C:\ Users\ACER\ Desktop\stereo.wav’)

; // Reading a stereo file

//sound (y,Fs); // Uncomment to play stereo

left=y(1,:); //Extracts the first row

sound (left ,Fs); //Uncomment to get left side
component

t=(0:1length(left)-1)*1/Fs;

subplot (211)

plot(t,left)

title(' Left side audio component’)

xlabel ('Time in seconds’)

ylabel (" Amplitude ")

right=y(2,:);

sound (right ,Fs); // Uncomment to get right

componet .
subplot (212)
plot(t,left)
title(’Right side audio component’)
xlabel ("Time in seconds’)
ylabel (' Amplitude ")

file

side

© 00 J O U = W N

—_
)

—_
—

12
13
14
15
16

Experiment: 3

Finding the Resonating
Frequency of a Tuning Fork

Scilab code Solution 3.1 Resonating Freq using spectrum

// Program to find the Resonating frequency of a
Tuning fork

// using spectrum of the signal

//

//OS: windows 7

//Scilab: 5.5.2

//

clc;

close;

clear;

[y,Fs] = wavread(’C:\ Users\ACER\ Desktop\Freq512Hz .
wav ') ;

y=y(200:1900); // considering only a segment to
reduce the amount of computation

t=(0:1length(y)-1)/Fs;

subplot (211)

plot(t,y)

xlabel ('Time in seconds’)

title(’Original signal’)

10

17
18
19
20

21
22
23
24

25
26
27
28
29

30
31

32

© 00 N O Ot i W

10

Y=abs (fft(y)); //find the fourier transform

1
f

length(Y)/2;
(0:(1-1))*Fs/(2*1); //modify the x axis to
represent frequency instead of samples

abs_fft = abs(Y(1:1));

subplot (212)

plot (f,abs_fft); //plot magnitude of fourier
transform

title(’Fourier Transform of signal’)

xlabel ("Frequency)

ylabel ("Amplitude)

peak = max(abs_fft); //find the first maxima of the

spectrum

peakfreq = [f(abs_fft == peak)]

disp(’Resonating frequency of given tuning fork (in
Hz): ’);

disp (peakfreq); //display the contained frequencies

Scilab code Solution 3.2 Resonating Freq in mixed frequency signal

// This program finds the frequency components in a
given mixed frequency signal

// Mixed frequency signal was recorded by playing 2
Tunng forks simultaneously

//

//OS: windows 7

//Scilab: 5.5.2

//

clc;

close;

clear;

11

11

12
13
14
15
16

17
18
19
20
21
22
23
24
25

26

27

28

29

30

31

[y,Fs] = wavread (’C:\ Users\ACER\ Desktop
Mixed512and384 .wav’); //read the audio file

Y=abs (fft(y)); //find the fourier transform

1
f

length(Y)/2;
(0:(1-1))*Fs/(2*1); //modify the x axis to
represent frequency instead of samples

abs_fft = abs(Y(1:1));

plot (f,abs_fft); //plot magnitude of fourier
transform

title(’Fourier Transform of signal’)

xlabel ("Frequency ’)

ylabel (' Amplitude)

peak = max(abs_fft); //find the first maxima of the
spectrum

secpeak = max(abs_fft(abs_fft<max(abs_fft))); //
find the second maxima of the spectrum

peakfreq = [f(abs_fft == peak), f(abs_fft == secpeak
)1; //find the frequency corresponding to the
peaks

peakfreq = gsort(peakfreq); //sort the detected
frequencies
peakfreq(abs (max (peakfreq) - max(peakfreq(peakfreq<
max (peakfreq)))) < 10) = []; //remove frequencies
that are very close to one another

disp(’Given signal has following frequencies (in Hz)
)G
disp(peakfreq); //display the contained frequencies

Scilab code Solution 3.3 Resonating Freq using Autocorrelation

12

—
S © 00 N O O W N

—_
—

—_
[\)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

32
33

// Finding the Resonating frequency of a Tuning fork
using
// Autocorrelation method.

//
//OS: windows 7

//Scilab: 5.5.2

//

clc;

close;

clear;

[y,Fs] = wavread(’C:\ Users\ACER\ Desktop\Freq512Hz .
wav) ;

y=y(200:1900); // considering only a segment to
reduce the amount of computation

t=(0:1length(y)-1)/Fs;

subplot (211)

plot(t,y)

xlabel ("Time in seconds’)

title(’Original signal’);

cl=xcorr(y);

subplot (212)

lag=(1:1length(cl))-ceil(length(cl)/2);

plot (lag,cl)

title(’Autocorrelation if the given segment’)

cl = -c1; //flip the ACF to get two maxima peaks

[a,b]
[c,d]

max(c1); //find the first maxima
max(c1(b+1:$)); //find the second maxima

numsamples = d+1; //get the number of samples
between the peaks

freqncy = Fs/numsamples; //calculate the frequency
of the signal

disp(’Resonating frequency in Hz: ’);

13

34 disp(freqncy); //display the frequency

14

	
	Basic Operations on Signals
	Concatenation of Speech Signals
	Finding the Resonating Frequency of a Tuning Fork

