
Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Linear Algebra, Optimization and Solving
Ordinary Differential Equations Using Scilab

Deepak U. Patil
deepakp@ee.iitb.ac.in

Indian Institute of Technology, Bombay

November 8, 2009

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Linear Algebra

Optimization

Solving Ordinary Differential Equations

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

System of Linear Equations

I Consider
x1 + x2 + x3 = 10
3x1 + x2 + 2x3 = 5
x1 + x2 − x3 = 1.

I Can be represented as
Ax = b

where A =

1 1 1
3 1 2
1 1 −1


and b =

10
5
1

.

I Number of Equations may or may not be equal to number of
unknowns.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

System of Linear Equations

I Consider
x1 + x2 + x3 = 10
3x1 + x2 + 2x3 = 5
x1 + x2 − x3 = 1.

I Can be represented as
Ax = b

where A =

1 1 1
3 1 2
1 1 −1


and b =

10
5
1

.

I Number of Equations may or may not be equal to number of
unknowns.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

System of Linear Equations

I Consider
x1 + x2 + x3 = 10
3x1 + x2 + 2x3 = 5
x1 + x2 − x3 = 1.

I Can be represented as
Ax = b

where A =

1 1 1
3 1 2
1 1 −1


and b =

10
5
1

.

I Number of Equations may or may not be equal to number of
unknowns.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Solution by Scilab

I Solve using single line code
x=A\b

I Or use command
[x,ker]=linsolve(A,b)

I To find Kernel(nullspace) of a system separately use
ker=kernel(A)

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Solution by Scilab

I Solve using single line code
x=A\b

I Or use command
[x,ker]=linsolve(A,b)

I To find Kernel(nullspace) of a system separately use
ker=kernel(A)

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Solution by Scilab

I Solve using single line code
x=A\b

I Or use command
[x,ker]=linsolve(A,b)

I To find Kernel(nullspace) of a system separately use
ker=kernel(A)

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Other useful functions

I [D,X]=bdiag(A) //Block Diagonalisation

I [U,S,V]=svd(A) //Singular Value
Decomposition

I [L,U]=lu(A) //Lower and Upper Traingular
form Decomposition

I [Q,R]=qr(A) //QR-Decomposition

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Other useful functions

I [D,X]=bdiag(A) //Block Diagonalisation

I [U,S,V]=svd(A) //Singular Value
Decomposition

I [L,U]=lu(A) //Lower and Upper Traingular
form Decomposition

I [Q,R]=qr(A) //QR-Decomposition

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Other useful functions

I [D,X]=bdiag(A) //Block Diagonalisation

I [U,S,V]=svd(A) //Singular Value
Decomposition

I [L,U]=lu(A) //Lower and Upper Traingular
form Decomposition

I [Q,R]=qr(A) //QR-Decomposition

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Other useful functions

I [D,X]=bdiag(A) //Block Diagonalisation

I [U,S,V]=svd(A) //Singular Value
Decomposition

I [L,U]=lu(A) //Lower and Upper Traingular
form Decomposition

I [Q,R]=qr(A) //QR-Decomposition

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Examples

I Solve
x1 + 4x2 = 34
−3x1 + x2 = 2

I Solve
2x1 − 2x2 + 3x3 = 1
x1 + 2x2 + 3x3 = 2

I Use linsolve

I Try this for previously obtained solution
A*x A*(x+ker) //In this case kernel is a line

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Examples

I Solve
x1 + 4x2 = 34
−3x1 + x2 = 2

I Solve
2x1 − 2x2 + 3x3 = 1
x1 + 2x2 + 3x3 = 2

I Use linsolve

I Try this for previously obtained solution
A*x A*(x+ker) //In this case kernel is a line

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Examples

I Solve
x1 + 4x2 = 34
−3x1 + x2 = 2

I Solve
2x1 − 2x2 + 3x3 = 1
x1 + 2x2 + 3x3 = 2

I Use linsolve

I Try this for previously obtained solution
A*x A*(x+ker) //In this case kernel is a line

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Examples

I Solve
x1 + 4x2 = 34
−3x1 + x2 = 2

I Solve
2x1 − 2x2 + 3x3 = 1
x1 + 2x2 + 3x3 = 2

I Use linsolve

I Try this for previously obtained solution
A*x A*(x+ker) //In this case kernel is a line

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Nonlinear Root Finding

I Many real world problems requires us to solve f (x) = 0

I In Scilab fsolve can be used.

I Function can be defined in a separate file.

I Function is passed as an argument.

I For Example:
Solve x2 + 3x + 2 = 0
deff(’y=f(x)’,’y=x^ 2+3*x+2’)
x=fsolve(x0,f)
where x0 is initial guess.

I One can also define function f : Rn → Rn and solve it for zero
locations.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Nonlinear Root Finding

I Many real world problems requires us to solve f (x) = 0

I In Scilab fsolve can be used.

I Function can be defined in a separate file.

I Function is passed as an argument.

I For Example:
Solve x2 + 3x + 2 = 0
deff(’y=f(x)’,’y=x^ 2+3*x+2’)
x=fsolve(x0,f)
where x0 is initial guess.

I One can also define function f : Rn → Rn and solve it for zero
locations.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Nonlinear Root Finding

I Many real world problems requires us to solve f (x) = 0

I In Scilab fsolve can be used.

I Function can be defined in a separate file.

I Function is passed as an argument.

I For Example:
Solve x2 + 3x + 2 = 0
deff(’y=f(x)’,’y=x^ 2+3*x+2’)
x=fsolve(x0,f)
where x0 is initial guess.

I One can also define function f : Rn → Rn and solve it for zero
locations.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Nonlinear Root Finding

I Many real world problems requires us to solve f (x) = 0

I In Scilab fsolve can be used.

I Function can be defined in a separate file.

I Function is passed as an argument.

I For Example:
Solve x2 + 3x + 2 = 0
deff(’y=f(x)’,’y=x^ 2+3*x+2’)
x=fsolve(x0,f)
where x0 is initial guess.

I One can also define function f : Rn → Rn and solve it for zero
locations.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Nonlinear Root Finding

I Many real world problems requires us to solve f (x) = 0

I In Scilab fsolve can be used.

I Function can be defined in a separate file.

I Function is passed as an argument.

I For Example:
Solve x2 + 3x + 2 = 0
deff(’y=f(x)’,’y=x^ 2+3*x+2’)
x=fsolve(x0,f)
where x0 is initial guess.

I One can also define function f : Rn → Rn and solve it for zero
locations.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Nonlinear Root Finding

I Many real world problems requires us to solve f (x) = 0

I In Scilab fsolve can be used.

I Function can be defined in a separate file.

I Function is passed as an argument.

I For Example:
Solve x2 + 3x + 2 = 0
deff(’y=f(x)’,’y=x^ 2+3*x+2’)
x=fsolve(x0,f)
where x0 is initial guess.

I One can also define function f : Rn → Rn and solve it for zero
locations.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Minimizing a Function

I Maximizing a function f (x) is same as minimizing −f (x).

I optim is the inbuilt function for this purpose.

I It can be used for both Constrained and Unbounded
minimization Problem.

I [f,xopt]=optim(costf,x0) //gradient has to be
specified

I [f,xopt]=optim(list(NDcost,myf),x0)

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Minimizing a Function

I Maximizing a function f (x) is same as minimizing −f (x).

I optim is the inbuilt function for this purpose.

I It can be used for both Constrained and Unbounded
minimization Problem.

I [f,xopt]=optim(costf,x0) //gradient has to be
specified

I [f,xopt]=optim(list(NDcost,myf),x0)

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Minimizing a Function

I Maximizing a function f (x) is same as minimizing −f (x).

I optim is the inbuilt function for this purpose.

I It can be used for both Constrained and Unbounded
minimization Problem.

I [f,xopt]=optim(costf,x0) //gradient has to be
specified

I [f,xopt]=optim(list(NDcost,myf),x0)

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Minimizing a Function

I Maximizing a function f (x) is same as minimizing −f (x).

I optim is the inbuilt function for this purpose.

I It can be used for both Constrained and Unbounded
minimization Problem.

I [f,xopt]=optim(costf,x0) //gradient has to be
specified

I [f,xopt]=optim(list(NDcost,myf),x0)

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Minimizing a Function

I Maximizing a function f (x) is same as minimizing −f (x).

I optim is the inbuilt function for this purpose.

I It can be used for both Constrained and Unbounded
minimization Problem.

I [f,xopt]=optim(costf,x0) //gradient has to be
specified

I [f,xopt]=optim(list(NDcost,myf),x0)

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Minimizing a Function

I Maximizing a function f (x) is same as minimizing −f (x).

I optim is the inbuilt function for this purpose.

I It can be used for both Constrained and Unbounded
minimization Problem.

I [f,xopt]=optim(costf,x0) //gradient has to be
specified

I [f,xopt]=optim(list(NDcost,myf),x0)

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

For Example

I Minimize:
f (x , y) = (x + y)2 + x + y + 2

I Gradient of the Function f
∇f =

(
2(x + y) + 1 2(x + y) + 1

)

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Numerical Differentiation

I g=numdiff(f,x)

I If f : Rn → R, then g is gradient of f at x .

I If f : Rn → Rm, then g is Jacobian a m × n Matrix.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Numerical Differentiation

I g=numdiff(f,x)

I If f : Rn → R, then g is gradient of f at x .

I If f : Rn → Rm, then g is Jacobian a m × n Matrix.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Numerical Differentiation

I g=numdiff(f,x)

I If f : Rn → R, then g is gradient of f at x .

I If f : Rn → Rm, then g is Jacobian a m × n Matrix.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Hessian

I [g,H]=derivative(f,x) is the calling sequence

I for a function f : Rn → R
g is the gradient of f
and H is Hessian matrix of f

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Ordinary Differential Equations

I y=ode(x0,t0,t,myode) is the calling sequence.

I x0 is initial condition.
t0 is initial time
t is the time instants at which solution is needed.
’myode’ is external function which defines the differential
equation.

I Higher Order Equations must be made into first order
equations of form ẋ = Ax + Bu.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Ordinary Differential Equations

I y=ode(x0,t0,t,myode) is the calling sequence.

I x0 is initial condition.
t0 is initial time
t is the time instants at which solution is needed.
’myode’ is external function which defines the differential
equation.

I Higher Order Equations must be made into first order
equations of form ẋ = Ax + Bu.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Ordinary Differential Equations

I y=ode(x0,t0,t,myode) is the calling sequence.

I x0 is initial condition.
t0 is initial time
t is the time instants at which solution is needed.
’myode’ is external function which defines the differential
equation.

I Higher Order Equations must be made into first order
equations of form ẋ = Ax + Bu.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Examples

I Solve the differential equation
d2θ
dt2 + g

L sin(θ) = 0

I Take g = 9.8 m/s2 L = 1 m

I Check the plot of solution against time using
plot2d(t,x(1,:) and plot2d(t,x(2,:))

I Also obtain the phase plane plot using
plot2d(x(1,:),x(2,:))

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Thank You!

I www.scilab.org

I ”Modeling And Simulation in Scilab/Scicos”,by S.L.Campbell,
J. Chancelier, R. Nikoukah.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Thank You!

I www.scilab.org

I ”Modeling And Simulation in Scilab/Scicos”,by S.L.Campbell,
J. Chancelier, R. Nikoukah.

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab


	Outline
	Linear Algebra
	Optimization
	Solving Ordinary Differential Equations
	

