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System of Linear Equations

I Consider
x1 + x2 + x3 = 10
3x1 + x2 + 2x3 = 5
x1 + x2 − x3 = 1.

I Can be represented as
Ax = b

where A =

1 1 1
3 1 2
1 1 −1


and b =

10
5
1

.

I Number of Equations may or may not be equal to number of
unknowns.
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Solution by Scilab

I Solve using single line code
x=A\b

I Or use command
[x,ker]=linsolve(A,b)

I To find Kernel(nullspace) of a system separately use
ker=kernel(A)
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Other useful functions

I [D,X]=bdiag(A) //Block Diagonalisation

I [U,S,V]=svd(A) //Singular Value
Decomposition

I [L,U]=lu(A) //Lower and Upper Traingular
form Decomposition

I [Q,R]=qr(A) //QR-Decomposition
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Examples

I Solve
x1 + 4x2 = 34
−3x1 + x2 = 2

I Solve
2x1 − 2x2 + 3x3 = 1
x1 + 2x2 + 3x3 = 2

I Use linsolve

I Try this for previously obtained solution
A*x A*(x+ker) //In this case kernel is a line

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Examples

I Solve
x1 + 4x2 = 34
−3x1 + x2 = 2

I Solve
2x1 − 2x2 + 3x3 = 1
x1 + 2x2 + 3x3 = 2

I Use linsolve

I Try this for previously obtained solution
A*x A*(x+ker) //In this case kernel is a line

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Examples

I Solve
x1 + 4x2 = 34
−3x1 + x2 = 2

I Solve
2x1 − 2x2 + 3x3 = 1
x1 + 2x2 + 3x3 = 2

I Use linsolve

I Try this for previously obtained solution
A*x A*(x+ker) //In this case kernel is a line

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Examples

I Solve
x1 + 4x2 = 34
−3x1 + x2 = 2

I Solve
2x1 − 2x2 + 3x3 = 1
x1 + 2x2 + 3x3 = 2

I Use linsolve

I Try this for previously obtained solution
A*x A*(x+ker) //In this case kernel is a line

Deepak Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab



Outline
Linear Algebra

Optimization
Solving Ordinary Differential Equations

Nonlinear Root Finding

I Many real world problems requires us to solve f (x) = 0

I In Scilab fsolve can be used.

I Function can be defined in a separate file.

I Function is passed as an argument.

I For Example:
Solve x2 + 3x + 2 = 0
deff(’y=f(x)’,’y=x^ 2+3*x+2’)
x=fsolve(x0,f)
where x0 is initial guess.

I One can also define function f : Rn → Rn and solve it for zero
locations.
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Minimizing a Function

I Maximizing a function f (x) is same as minimizing −f (x).

I optim is the inbuilt function for this purpose.

I It can be used for both Constrained and Unbounded
minimization Problem.

I [f,xopt]=optim(costf,x0) //gradient has to be
specified

I [f,xopt]=optim(list(NDcost,myf),x0)
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For Example

I Minimize:
f (x , y) = (x + y)2 + x + y + 2

I Gradient of the Function f
∇f =

(
2(x + y) + 1 2(x + y) + 1

)
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Numerical Differentiation

I g=numdiff(f,x)

I If f : Rn → R, then g is gradient of f at x .

I If f : Rn → Rm, then g is Jacobian a m × n Matrix.
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Hessian

I [g,H]=derivative(f,x) is the calling sequence

I for a function f : Rn → R
g is the gradient of f
and H is Hessian matrix of f
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Ordinary Differential Equations

I y=ode(x0,t0,t,myode) is the calling sequence.

I x0 is initial condition.
t0 is initial time
t is the time instants at which solution is needed.
’myode’ is external function which defines the differential
equation.

I Higher Order Equations must be made into first order
equations of form ẋ = Ax + Bu.
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Examples

I Solve the differential equation
d2θ
dt2 + g

L sin(θ) = 0

I Take g = 9.8 m/s2 L = 1 m

I Check the plot of solution against time using
plot2d(t,x(1,:) and plot2d(t,x(2,:))

I Also obtain the phase plane plot using
plot2d(x(1,:),x(2,:))
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Thank You!

I www.scilab.org

I ”Modeling And Simulation in Scilab/Scicos”,by S.L.Campbell,
J. Chancelier, R. Nikoukah.
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