Linear Algebra, Optimization and Solving Ordinary Differential Equations Using Scilab

Deepak U. Patil
deepakp@ee.iitb.ac.in
Indian Institute of Technology, Bombay

November 8, 2009

Linear Algebra

Optimization

Solving Ordinary Differential Equations

System of Linear Equations

- Consider

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=10 \\
& 3 x_{1}+x_{2}+2 x_{3}=5 \\
& x_{1}+x_{2}-x_{3}=1
\end{aligned}
$$

System of Linear Equations

- Consider

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=10 \\
& 3 x_{1}+x_{2}+2 x_{3}=5 \\
& x_{1}+x_{2}-x_{3}=1
\end{aligned}
$$

- Can be represented as $A x=b$
where $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & 1 & -1\end{array}\right)$
and $b=\left(\begin{array}{c}10 \\ 5 \\ 1\end{array}\right)$.

System of Linear Equations

- Consider

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=10 \\
& 3 x_{1}+x_{2}+2 x_{3}=5 \\
& x_{1}+x_{2}-x_{3}=1
\end{aligned}
$$

- Can be represented as
$A x=b$
where $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & 1 & -1\end{array}\right)$
and $b=\left(\begin{array}{c}10 \\ 5 \\ 1\end{array}\right)$.
- Number of Equations may or may not be equal to number of unknowns.

Solution by Scilab

- Solve using single line code $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$

Solution by Scilab

- Solve using single line code $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$
- Or use command
[$\mathrm{x}, \mathrm{ker}]=$ linsolve(A, b)

Solution by Scilab

- Solve using single line code $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$
- Or use command
[$\mathrm{x}, \mathrm{ker}]=$ linsolve (A, b)
- To find Kernel(nullspace) of a system separately use ker=kernel (A)

Other useful functions

- [D, X]=bdiag(A) //Block Diagonalisation

Other useful functions

- $[\mathrm{D}, \mathrm{X}]=\mathrm{bdiag}(\mathrm{A})$
//Block Diagonalisation
- [U,S,V]=svd(A) //Singular Value Decomposition

Other useful functions

- [D, X]=bdiag(A) //Block Diagonalisation
- [U,S,V]=svd(A) //Singular Value Decomposition
- $[\mathrm{L}, \mathrm{U}]=l u(\mathrm{~A}) \quad / /$ Lower and Upper Traingular form Decomposition

Other useful functions

- [D, X]=bdiag(A) //Block Diagonalisation
- [U,S,V]=svd(A) //Singular Value Decomposition
- $[\mathrm{L}, \mathrm{U}]=l u(\mathrm{~A}) \quad / /$ Lower and Upper Traingular form Decomposition
- $[\mathrm{Q}, \mathrm{R}]=\mathrm{qr}(\mathrm{A}) \quad / / \mathrm{QR}$-Decomposition

Examples

- Solve

$$
\begin{aligned}
& x_{1}+4 x_{2}=34 \\
& -3 x_{1}+x_{2}=2
\end{aligned}
$$

Examples

- Solve

$$
\begin{aligned}
& x_{1}+4 x_{2}=34 \\
& -3 x_{1}+x_{2}=2
\end{aligned}
$$

- Solve

$$
\begin{aligned}
& 2 x_{1}-2 x_{2}+3 x_{3}=1 \\
& x_{1}+2 x_{2}+3 x_{3}=2
\end{aligned}
$$

Examples

- Solve

$$
\begin{aligned}
& x_{1}+4 x_{2}=34 \\
& -3 x_{1}+x_{2}=2
\end{aligned}
$$

- Solve

$$
\begin{aligned}
& 2 x_{1}-2 x_{2}+3 x_{3}=1 \\
& x_{1}+2 x_{2}+3 x_{3}=2
\end{aligned}
$$

- Use linsolve

Examples

- Solve

$$
\begin{aligned}
& x_{1}+4 x_{2}=34 \\
& -3 x_{1}+x_{2}=2
\end{aligned}
$$

- Solve

$$
\begin{aligned}
& 2 x_{1}-2 x_{2}+3 x_{3}=1 \\
& x_{1}+2 x_{2}+3 x_{3}=2
\end{aligned}
$$

- Use linsolve
- Try this for previously obtained solution

$$
\text { A*x } A *(x+k e r) \quad / / I n \text { this case kernel is a line }
$$

Nonlinear Root Finding

- Many real world problems requires us to solve $f(x)=0$

Nonlinear Root Finding

- Many real world problems requires us to solve $f(x)=0$
- In Scilab fsolve can be used.

Nonlinear Root Finding

- Many real world problems requires us to solve $f(x)=0$
- In Scilab fsolve can be used.
- Function can be defined in a separate file.

Nonlinear Root Finding

- Many real world problems requires us to solve $f(x)=0$
- In Scilab fsolve can be used.
- Function can be defined in a separate file.
- Function is passed as an argument.

Nonlinear Root Finding

- Many real world problems requires us to solve $f(x)=0$
- In Scilab fsolve can be used.
- Function can be defined in a separate file.
- Function is passed as an argument.
- For Example:

Solve $x^{2}+3 x+2=0$
deff('y=f(x)','y=x-2+3*x+2')
$\mathrm{x}=\mathrm{fsolve}(\mathrm{x} 0, \mathrm{f})$
where $x 0$ is initial guess.

Nonlinear Root Finding

- Many real world problems requires us to solve $f(x)=0$
- In Scilab fsolve can be used.
- Function can be defined in a separate file.
- Function is passed as an argument.
- For Example:

Solve $x^{2}+3 x+2=0$ deff('y=f(x)','y=x-2+3*x+2') $\mathrm{x}=\mathrm{fsolve}(\mathrm{x} 0, \mathrm{f})$ where $\times 0$ is initial guess.

- One can also define function $f: R^{n} \rightarrow R^{n}$ and solve it for zero locations.

Minimizing a Function

- Maximizing a function $f(x)$ is same as minimizing $-f(x)$.

Minimizing a Function

- Maximizing a function $f(x)$ is same as minimizing $-f(x)$.
- optim is the inbuilt function for this purpose.

Minimizing a Function

- Maximizing a function $f(x)$ is same as minimizing $-f(x)$.
- optim is the inbuilt function for this purpose.
- It can be used for both Constrained and Unbounded minimization Problem.

Minimizing a Function

- Maximizing a function $f(x)$ is same as minimizing $-f(x)$.
- optim is the inbuilt function for this purpose.
- It can be used for both Constrained and Unbounded minimization Problem.
- [f,xopt]=optim(costf,x0) //gradient has to be specified

Minimizing a Function

- Maximizing a function $f(x)$ is same as minimizing $-f(x)$.
- optim is the inbuilt function for this purpose.
- It can be used for both Constrained and Unbounded minimization Problem.
- [f,xopt]=optim(costf,x0) //gradient has to be specified

Minimizing a Function

- Maximizing a function $f(x)$ is same as minimizing $-f(x)$.
- optim is the inbuilt function for this purpose.
- It can be used for both Constrained and Unbounded minimization Problem.
- [f,xopt]=optim(costf,x0) //gradient has to be specified
- [f,xopt]=optim(list(NDcost,myf),x0)

For Example

- Minimize:

$$
f(x, y)=(x+y)^{2}+x+y+2
$$

- Gradient of the Function f

$$
\nabla f=(2(x+y)+1 \quad 2(x+y)+1)
$$

Numerical Differentiation

- $g=n u m \operatorname{diff}(f, x)$

Numerical Differentiation

- $\mathrm{g}=\mathrm{numdiff}(\mathrm{f}, \mathrm{x})$
- If $f: R^{n} \rightarrow R$, then g is gradient of f at x.

Numerical Differentiation

- $\mathrm{g}=\mathrm{numdiff}(\mathrm{f}, \mathrm{x})$
- If $f: R^{n} \rightarrow R$, then g is gradient of f at x.
- If $f: R^{n} \rightarrow R^{m}$, then g is Jacobian a $m \times n$ Matrix.

Hessian

- $[\mathrm{g}, \mathrm{H}]=$ derivative (f, x) is the calling sequence
- for a function $f: R^{n} \rightarrow R$ g is the gradient of f and H is Hessian matrix of f

Ordinary Differential Equations

- $\mathrm{y}=\mathrm{ode}(\mathrm{x} 0, \mathrm{t} 0, \mathrm{t}, \mathrm{myode})$ is the calling sequence.

Ordinary Differential Equations

- $\mathrm{y}=\mathrm{ode}$ ($\mathrm{x} 0, \mathrm{t} 0, \mathrm{t}$, myode) is the calling sequence.
- $x 0$ is initial condition.
t0 is initial time
t is the time instants at which solution is needed.
'myode' is external function which defines the differential equation.

Ordinary Differential Equations

- $\mathrm{y}=\mathrm{ode}(\mathrm{x} 0, \mathrm{t} 0, \mathrm{t}$, myode $)$ is the calling sequence.
- $x 0$ is initial condition.
t0 is initial time
t is the time instants at which solution is needed. 'myode' is external function which defines the differential equation.
- Higher Order Equations must be made into first order equations of form $\dot{x}=A x+B u$.

Examples

- Solve the differential equation

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}+\frac{g}{L} \sin (\theta)=0
$$

- Take $g=9.8 \mathrm{~m} / \mathrm{s}^{2} L=1 \mathrm{~m}$
- Check the plot of solution against time using plot2d(t,x(1,:) and plot2d(t,x(2,:))
- Also obtain the phase plane plot using plot2d(x(1,:), $x(2,:))$

Thank You!

- www.scilab.org

Thank You!

- www.scilab.org
- "Modeling And Simulation in Scilab/Scicos", by S.L.Campbell, J. Chancelier, R. Nikoukah.

