Least square fit of a line/polynomial to input/output data

Dr. Madhu N. Belur

Control & Computing group Department of Electrical Engineering Indian Institute of Technology Bombay Email: belur@ee.iitb.ac.in

30th Nov, 2010

▲口> ▲圖> ▲理> ▲理> 三理 ---

Outline	Scilab	Least squares	Scilab commands

Outline

・ロト ・回ト ・ヨト ・ヨト

Outline	Scilab	Least squares	Scilab commands
Today's fo	ocus		

• Scilab is free.

▲□→ ▲圖→ ▲厘→ ▲厘→

Today's focus

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.

▲□→ < □→</p>

< ≣⇒

A ■

Today's focus

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.
- Scilab provides all basic and many advanced tools.

Today's focus

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.
- Scilab provides all basic and many advanced tools.
- Today: best fit: line and polynomial : reglin command

Outline	Scilab	Least squares	Scilab commands
Linear fit			

Given *n* samples of (x, z) pairs: x_i and z_i for i = 1, ..., n, we expect following equation is satisfied

$$z_i = a_1 x_i + a_0$$
 for $i = 1, ..., n$ (1)

▲ ▶ ▲ ●

for some constants a_1 and a_0 .

Outline	Scilab	Least squares	Scilab commands
Linear fit			

Given *n* samples of (x, z) pairs:

 x_i and z_i for $i = 1, \ldots, n$, we expect following equation is satisfied

$$z_i = a_1 x_i + a_0$$
 for $i = 1, ..., n$ (1)

for some constants a_1 and a_0 . x_i and z_i fall on some line with slope a_1 and 'z-intercept'= a_0 . The 'line fit' problem: Find these constants a_1 and a_0 . 'Best' fit?

Outline	Scilab	Least squares	Scilab commands
Best fit			

Real situtation: Equation (1) will not be satisfied 'exactly'. Least-square-fit problem: Given *n* samples of (x_i, z_i) pairs,

A ■

Outline	Scilab	Least squares	Scilab commands
Rest fit			

Real situtation: Equation (1) will not be satisfied 'exactly'. Least-square-fit problem: Given *n* samples of (x_i, z_i) pairs, find constants a_1 and a_0 such that the 'total square error'

$$\sum_{i=1}^{n} (z_i - a_1 x_i - a_0)^2$$
 (2)

is least.

Outline	Scilab	Least squares	Scilab commands
Rest fit			

Real situtation: Equation (1) will not be satisfied 'exactly'. Least-square-fit problem: Given *n* samples of (x_i, z_i) pairs, find constants a_1 and a_0 such that the 'total square error'

$$\sum_{i=1}^{n} (z_i - a_1 x_i - a_0)^2$$
 (2)

is least.

Least square error

▲ 御 ▶ → ミ ▶

문 문 문

Higher order polynomial best fit

Least-square-fit problem (of higher order):

A⊒ ▶ ∢ ∃

Higher order polynomial best fit

Least-square-fit problem (of higher order): Suppose we expect z_i satisfies the following equation:

$$z_i = a_2 x_i^2 + a_1 x_i + a_0$$

Least-square-fit problem (of higher order): Suppose we expect z_i satisfies the following equation:

$$z_i = a_2 x_i^2 + a_1 x_i + a_0$$

Points (x_i, z_i) are sitting on a parabola.

Least-square-fit problem (of higher order): Suppose we expect z_i satisfies the following equation:

$$z_i = a_2 x_i^2 + a_1 x_i + a_0$$

Points (x_i, z_i) are sitting on a parabola. Problem (more generally):

Least-square-fit problem (of higher order): Suppose we expect z_i satisfies the following equation:

$$z_i = a_2 x_i^2 + a_1 x_i + a_0$$

Points (x_i, z_i) are sitting on a parabola. Problem (more generally): Given *n* samples of (x_i, z_i) pairs and some choice of degree *d*.

Least-square-fit problem (of higher order): Suppose we expect z_i satisfies the following equation:

$$z_i = a_2 x_i^2 + a_1 x_i + a_0$$

Points (x_i, z_i) are sitting on a parabola.

Problem (more generally):

Given *n* samples of (x_i, z_i) pairs and some choice of degree *d*. Find constants $a_d, \ldots a_1$ and a_0 such that the 'total square error'

$$\sum_{i=1}^{n} (a_d x_i^d + a_{d-1} x_i^{d-1} + \dots + a_1 x_i + a_0 - z_i)^2$$
(3)

is least.

Least-square-fit problem (of higher order): Suppose we expect z_i satisfies the following equation:

$$z_i = a_2 x_i^2 + a_1 x_i + a_0$$

Points (x_i, z_i) are sitting on a parabola.

Problem (more generally):

Given *n* samples of (x_i, z_i) pairs and some choice of degree *d*. Find constants $a_d, \ldots a_1$ and a_0 such that the 'total square error'

$$\sum_{i=1}^{n} (a_d x_i^d + a_{d-1} x_i^{d-1} + \dots + a_1 x_i + a_0 - z_i)^2$$
(3)

is least.

Outline	Scilab	Least squares	Scilab commands
reglin			

The unknowns a_i enter the problem linearly.

▲ ▶ ▲ ●

Outline	Scilab	Least squares	Scilab commands
reglin			

The unknowns a_i enter the problem linearly.

(i.e. a_i 's are not getting squared, or multiplied to each other.) [a1, a0] = reglin(x,z)

where x and z are vectors with same number of columns.

$$\sum_i (z_i - a_1 x_i - a_0)^2$$

is minimized.

Outline	Scilab	Least squares	Scilab commands
reglin			

The unknowns a_i enter the problem linearly.

(i.e. a_i 's are not getting squared, or multiplied to each other.) [a1, a0] = reglin(x,z)

where x and z are vectors with same number of columns.

$$\sum_i (z_i - a_1 x_i - a_0)^2$$

is minimized.

 $[a1, a0, sig] = reglin(x,z) \\ sig : standard deviation of the residual.$

Outline	Scilab	Least squares	Scilab commands
reglin			

The unknowns a_i enter the problem linearly.

(i.e. a_i 's are not getting squared, or multiplied to each other.) [a1, a0] = reglin(x,z)

where x and z are vectors with same number of columns.

$$\sum_i (z_i - a_1 x_i - a_0)^2$$

is minimized.

[a1, a0, sig] = reglin(x,z)
sig : standard deviation of the residual.
(Smaller sig means better fit.)

More than one independent variables

Suppose z depends on independent variables x_1 , x_2 , etc. [a1,a0]=reglin(x,z) where x and z are matrix/vector with same number of columns.

More than one independent variables

Suppose z depends on independent variables x_1 , x_2 , etc. [a1,a0]=reglin(x,z) where x and z are matrix/vector with same number of columns. (but x has many rows.)

More than one independent variables

Suppose z depends on independent variables x_1 , x_2 , etc. [a1,a0]=reglin(x,z)where x and z are matrix/vector with same number of columns. (but x has many rows.) If x has more than one rows: components in a1 = number of rows of x (number of independent variables.)

Outline	Scilab	Least squares	Scilab commands

Exercise plan

Generate data using known (actual) values of a0 and a1.

→ 同 → → 三 →

< ≣⇒

Outline	Scilab	Least squares	Scilab commands

Exercise plan

Generate data using known (actual) values of a0 and a1. Add noise.

문 문 문

æ

< ≣ >

A (1) > (1) > (1)

Exercise plan

Generate data using known (actual) values of a0 and a1. Add noise.

Use noisy data to estimate a0 and a1:

Outline	Scilab	Least squares	Scilab commands
Random n	lumbers		

rand(3) generates a 1×1 random number (uniformly distributed between 0 and 1).

æ

∢ ≣⇒

▲ □ ► ▲ □ ►

Random numbers

rand(3) generates a 1×1 random number (uniformly distributed between 0 and 1). If P is an $n \times p$ matrix, then

A ■

Random numbers

rand(3) generates a 1×1 random number (uniformly distributed between 0 and 1). If P is an $n \times p$ matrix, then B=rand(P)defines a random matrix B of the size of P.

Random numbers

rand(3) generates a 1×1 random number (uniformly distributed between 0 and 1).

If P is an $n \times p$ matrix, then

B=rand(P)

defines a random matrix B of the size of P.

(P is not overwritten. A new matrix B is defined.)

Outline	Scilab	Least squares	Scilab commands
Exercises:			

Generate data, add noise, and estimate the parameters back: One independent variable (first). a0a = 3;a1a = 6;(actual) x = 1:10;

A⊒ ▶ ∢ ∃

Outline	Scilab	Least squares	Scilab commands
Exercises:			

Generate data, add noise, and estimate the parameters back: One independent variable (first). a0a = 3; a1a = 6;(actual) x = 1:10;dev = 0.5;

A⊒ ▶ ∢ ∃

Outline	Scilab	Least squares	Scilab commands
Exercises:			

Generate data, add noise, and estimate the parameters back: One independent variable (first). a0a = 3; a1a = 6;(actual) x = 1:10; dev = 0.5; $y = a1a^*x + a0a + dev^*(rand(x)-0.5)$ Use this x and y to estimate a0 and a1 Compare a0 & a1 with actual a0a & a1a.

Outline	Scilab	Least squares	Scilab commands
Exercises:			

Generate data, add noise, and estimate the parameters back: One independent variable (first). a0a = 3: a1a = 6: (actual) x = 1:10:dev = 0.5: y = a1a*x + a0a + dev*(rand(x)-0.5)Use this x and y to estimate a0 and a1 Compare a0 & a1 with actual a0a & a1a. For sig to compare with dev, note that sig is standard deviation (most relevant for normal distribution, and we used uniform distribution).

< □ > < 三 >

Fit 2nd order polynomial

Find a_2 , a_1 and a_0 such that

$$y = a_1 x + a_2 x^2 + a_0$$

Suppose a0a = 3; a1a = 6; a2a = 2; (actual)

æ

▲ 御 ▶ → ミ ▶

Fit 2nd order polynomial

Find a_2 , a_1 and a_0 such that

$$y = a_1 x + a_2 x^2 + a_0$$

Suppose a0a = 3; a1a = 6; a2a = 2; (actual) x = 1:10; dev = 0.5;

▲ □ ▶ → ● ▶ -

< ≣ >

æ

Fit 2nd order polynomial

Find a_2 , a_1 and a_0 such that

$$y = a_1 x + a_2 x^2 + a_0$$

Suppose a0a = 3; a1a = 6; a2a = 2; (actual) x = 1:10; dev = 0.5; y = $a1a*x + a2a*x*^2 + a0a + dev*(rand(x)-0.5)$ x = 1:10; x2 = x.^2; X=[x;x2]; reglin(X,y)

Intine		n			
Outillie				ν.	

Least squares

Scilab commands

æ

・ロト ・回ト ・ヨト ・ヨト

Read/write csv files

 $csv \equiv comma$ separated value

Madhu Belur, CC group, EE, IITB Least square fit

Read/write csv files

 $csv \equiv comma$ separated value

- $r = read_csv('lsquare_data.csv',ascii(9)); // read csv data into r$
- r = strsubst(r, ', ', '.'); // string substitute
- r = evstr(r); // convert string to numerical values

< 🗇 > < 🖃 >

Read/write csv files

 $csv \equiv comma$ separated value

- $r = read_csv('lsquare_data.csv',ascii(9)); // read csv data into r$
- r = strsubst(r, ', ', '.'); // string substitute
- r = evstr(r); // convert string to numerical values

xval = r(1,:); //first row (time)
yval = r(2,:); //second row (displacement)

æ

Displacement under gravity

Constant gravity: $g = 9.8 m/s^2$ downwards. Initial velocity: v_0 Initial displacement: x_0

$$x(t) = x_0 + v_0 t - \frac{1}{2}gt^2$$

A (10) > (10)

Outline	Scilab	Least squares	Scilab commands
Spoken tut	corial?		

More spoken tutorials?

・ロト ・回ト ・ヨト ・ヨト

◆ □ ▶ ◆ 三

Э

Spoken tutorial?

More spoken tutorials?

For least square fit: and remaining topics:

Spoken tutorial?

More spoken tutorials?

For least square fit: and remaining topics:

Enthusiasts/volunteers required for spoken tutorials creation.

A ₽

Spoken tutorial?

More spoken tutorials?

For least square fit: and remaining topics:

Enthusiasts/volunteers required for spoken tutorials creation. Be in touch

A ₽

Spoken tutorial?

More spoken tutorials?

For least square fit: and remaining topics:

Enthusiasts/volunteers required for spoken tutorials creation. Be in touch