Introduction to Xcos

Rupak Rokade

Indian Institute of Technology Bombay

National Workshop on Scilab Fr. C. Rodrigues Institute of Technology,Vashi December 1, 2010

- A Scilab connected object simulator
- Used for block diagram simulation
- Excellent GUI for Data processing

Xcos window

Rupak Rokade Indian Institute of Technology Bombay

Xcos palette browser

Э

First order Systems

$$\frac{V_o(s)}{V_i(s)} = \frac{1}{RCs + 1}$$

< ≣⇒

Rupak Rokade Indian Institute of Technology Bombay Introduction to Xcos 5/23

Step response of 'First order Systems'

< ∃⇒

Rupak Rokade Indian Institute of Technology Bombay Introduction to Xcos 6/23

Xcos for open loop simulation (first order)

Rupak Rokade Indian Institute of Technology Bombay

Introduction to Xcos 7/23

Xcos Response for open loop simulation

Xcos simulation response for Transfer function $\frac{1}{2s+1}$

Second order Systems

$$\frac{V_o(s)}{V_i(s)} = \frac{1}{s^2 + LCs + 1}$$

Rupak Rokade Indian Institute of Technology Bombay Introduction to Xcos 9/23

This second order transfer function can also be written in terms of ω_n , undamped natural frequency and ζ , damping ratio.

$$\frac{C(s)}{R(s)} = \frac{\omega_n}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

< ≣⇒

Step response of 'Second order Systems'

-≣->

Xcos for open loop simulation (second order)

Rupak Rokade Indian Institute of Technology Bombay

Introduction to Xcos 12/23

Xcos Response for open loop simulation

Xcos simulation response for Transfer function $\frac{1}{s^2+2*0.2*1*s+1}$

Xcos Response for open loop simulation

Xcos simulation response for Transfer function $\frac{1}{s^2+1}$

Xcos for plotting overlapped multiple plots

Rupak Rokade Indian Institute of Technology Bombay

Multiple plots in Xcos

< ∃→

Using scifunc in Xcos

Xcos simulation diagram with scifunc block

Ð

Rupak Rokade Indian Institute of Technology Bombay

Introduction to Xcos 17/23

Configuring Scifunc block

- Open the block properties of Scifunc block by double clicking on it
- Click on ok and you will be prompted to ask to enter the function name.
- Write, y = sine(u1) and click ok five times.
- Open editor, write the code as shown in the slide 19 and save it with some name (e.g. sine.sci).
- After making sure that you are in the same directory where the .xcos and .sci file resides, run the .sci file.
- After running the .sci file, open the xcos code and execute it.

• Remember to use the same function name in the .sci as well as .xcos file.

イロト イヨト イヨト イヨト

Response of Xcos simulation diagram with scifunc block

Xcos for closed loop controllers

Rupak Rokade Indian Institute of Technology Bombay

Introduction to Xcos 21/23

Xcos response for closed loop controller

э

Rupak Rokade Indian Institute of Technology Bombay Introduction to Xcos 22/23

Thank You

▲ロン ▲御と ▲注と ▲注と

Rupak Rokade Indian Institute of Technology Bombay Introduction to Xcos 23/23