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Basic signal processing tools

Discrete Fourier Transform

DFT

X(!) =

∞∑
n=−∞

x[n]e−j!n

The Scilab command 99K [xf] = dft(x,flag);

x is the time domain representation

xf is the frequency domain representation

flag = 1 or -1

Notice - Cosine is Even Symmetric, hence this 64-point DFT
is real with peaks at 4 and 60 (64-4)

Faster way - fft ...
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Basic signal processing tools

Fast Fourier Transform

FFT

x=fft(a ,-1) or x=fft(a)

y=fft2(x,n,m) - two-dimension

x=fft(a,-1,dim,incr) - multidimensional fft

fftshift(abs(y)) - rearranges the fft output, moving the zero
frequency to the center of the spectrum
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Basic signal processing tools

Fast Fourier Transform

Exercise 1
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Basic signal processing tools

Convolution

The convol Command

With the convol command

Without the convol command (multiplying in the frequency
domain)
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Basic signal processing tools

Convolution

Exercise 2
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Basic signal processing tools

Plotting

Bode and Pole-Zero Plots

Demo Pole-Zero Plot

Demo Bode Plot
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Basic signal processing tools

Group Delay

Group Delay

Rate of change of Phase w.r.t Frequency

�g =
d�

d!

Where,
�g is the Group Delay
� is for phase delay
! is for frequency
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Basic signal processing tools

Aliasing

What is Aliasing?

Ambiguity from reconstruction !

Shannon-Nyquist Sampling theorem.

Under-sampling

Scilab commands to remember -

t = soundsec(n [,rate]) - generates n sampled seconds of time
parameter

v = linspace(x1,x2 [,n]) - linearly spaced vector

mtlb hold(flag)
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Filter Design

Non-Recipe Based

First order filter

Second order filter

Observation : More attenuation !

Scilab commands to remember -

ss2tf, tf2ss, dscr - State-Space ¡-¿ Transfer Function,
Discretizing Continuous Systems

r = repfreq(Sys,frq) - Frequency response

playsnd(data)

filtered output = flts(input,filter)
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Filter Design

Non-Recipe Based

Analog filter family prototypes

Butterworth

Chebyshev

Inverse Chebyshev

Elliptic/Chauer
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Filter Design

Non-Recipe Based

Butterworth

Passband: Monotonic

Stopband: Monotonic

No ripples

Wide Transition, slow Roll-off
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Filter Design

Non-Recipe Based

Chebyshev

Passband: Equiripple

Stopband: Monotonic

Only ripples in Passband

Lesser Transition width, slow Roll-off at high frequencies
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Filter Design

Non-Recipe Based

Inverse Chebyshev

Passband: Monotonic

Stopband: Equiripple

Only ripples in Stopband

Lesser Transition width, slow Roll-off at low frequencies
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Filter Design

Non-Recipe Based

Elliptic

Passband: Equiripple

Stopband: Equiripple

Ripples in both - Passband and Stopband

Least Transition, sharp and fast Roll-off
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Filter Design

Non-Recipe Based

An example

Steps :

Decide over the filter specifications (type, PB and SB cut-offs,
ripples etc.)

Normalize

Calculate the Order of the filter

Calculate the filter coeffiecients

Implement Analog Transfer function

Perform bilinear transformation

Convert to the needed filter type

Let us design a Low-Pass Chebyshev Filter
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Filter Design

Recipe Based

Scilab Commands in Filter Design

iir - [hz]=iir(n,ftype,fdesign,frq,delta)

eqiir -
[cells,fact,zzeros,zpoles]=eqiir(ftype,approx,om,deltap,deltas)

eqfir - [hn]=eqfir(nf,bedge,des,wate)

wfir - [wft,wfm,fr]=wfir(ftype,forder,cfreq,wtype,fpar)

analpf - [hs,pols,zers,gain]=analpf(n,fdesign,rp,omega)

trans - hzt=trans(pd,zd,gd,tr type,frq)
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Filter Design

Recipe Based

Exercise 3
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Filter Design

An Example Application

Audio effects

Flanging - A sound file seems like riding on a wave

Echo - Delayed and added back

Equalizer - Different Frequency Bands

Low
Mid
High
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Filter Design

An Example Application

Thank you !
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Filter Design

An Example Application

Sanjit K. Mitra, “Digital Dignal Processing, A computer based
approach”, Tata McGraw-Hill Edition 1998.

Steven W. Smith, “http://www.dspguide.com/ ”

Carey Bunks, Franc ¸ois Delebecque, Georges Le Vey and
Serge Steer, “Scilab Group INRIA Meta2 Project/ENPC
Cergrene ”, Signal Processing with Scilab.
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