
Digital Signal Processing and Filter Design using Scilab

Digital Signal Processing and Filter Design using
Scilab

Iman Mukherjee

Department of Electrical Engineering, IIT Bombay

December 1, 2010

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Outline

1 Basic signal processing tools
Discrete Fourier Transform
Fast Fourier Transform
Convolution
Plotting
Group Delay
Aliasing

2 Filter Design
Non-Recipe Based
Recipe Based
An Example Application

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Discrete Fourier Transform

DFT

X(!) =

∞∑
n=−∞

x[n]e−j!n

The Scilab command 99K [xf] = dft(x,flag);

x is the time domain representation

xf is the frequency domain representation

flag = 1 or -1

Notice - Cosine is Even Symmetric, hence this 64-point DFT
is real with peaks at 4 and 60 (64-4)

Faster way - fft ...

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Discrete Fourier Transform

DFT

X(!) =

∞∑
n=−∞

x[n]e−j!n

The Scilab command 99K [xf] = dft(x,flag);

x is the time domain representation

xf is the frequency domain representation

flag = 1 or -1

Notice - Cosine is Even Symmetric, hence this 64-point DFT
is real with peaks at 4 and 60 (64-4)

Faster way - fft ...

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Discrete Fourier Transform

DFT

X(!) =

∞∑
n=−∞

x[n]e−j!n

The Scilab command 99K [xf] = dft(x,flag);

x is the time domain representation

xf is the frequency domain representation

flag = 1 or -1

Notice - Cosine is Even Symmetric, hence this 64-point DFT
is real with peaks at 4 and 60 (64-4)

Faster way - fft ...

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Discrete Fourier Transform

DFT

X(!) =

∞∑
n=−∞

x[n]e−j!n

The Scilab command 99K [xf] = dft(x,flag);

x is the time domain representation

xf is the frequency domain representation

flag = 1 or -1

Notice - Cosine is Even Symmetric, hence this 64-point DFT
is real with peaks at 4 and 60 (64-4)

Faster way - fft ...

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Discrete Fourier Transform

DFT

X(!) =

∞∑
n=−∞

x[n]e−j!n

The Scilab command 99K [xf] = dft(x,flag);

x is the time domain representation

xf is the frequency domain representation

flag = 1 or -1

Notice - Cosine is Even Symmetric, hence this 64-point DFT
is real with peaks at 4 and 60 (64-4)

Faster way - fft ...

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Discrete Fourier Transform

DFT

X(!) =

∞∑
n=−∞

x[n]e−j!n

The Scilab command 99K [xf] = dft(x,flag);

x is the time domain representation

xf is the frequency domain representation

flag = 1 or -1

Notice - Cosine is Even Symmetric, hence this 64-point DFT
is real with peaks at 4 and 60 (64-4)

Faster way - fft ...

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Discrete Fourier Transform

DFT

X(!) =

∞∑
n=−∞

x[n]e−j!n

The Scilab command 99K [xf] = dft(x,flag);

x is the time domain representation

xf is the frequency domain representation

flag = 1 or -1

Notice - Cosine is Even Symmetric, hence this 64-point DFT
is real with peaks at 4 and 60 (64-4)

Faster way - fft ...

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Fast Fourier Transform

FFT

x=fft(a ,-1) or x=fft(a)

y=fft2(x,n,m) - two-dimension

x=fft(a,-1,dim,incr) - multidimensional fft

fftshift(abs(y)) - rearranges the fft output, moving the zero
frequency to the center of the spectrum

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Fast Fourier Transform

FFT

x=fft(a ,-1) or x=fft(a)

y=fft2(x,n,m) - two-dimension

x=fft(a,-1,dim,incr) - multidimensional fft

fftshift(abs(y)) - rearranges the fft output, moving the zero
frequency to the center of the spectrum

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Fast Fourier Transform

FFT

x=fft(a ,-1) or x=fft(a)

y=fft2(x,n,m) - two-dimension

x=fft(a,-1,dim,incr) - multidimensional fft

fftshift(abs(y)) - rearranges the fft output, moving the zero
frequency to the center of the spectrum

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Fast Fourier Transform

FFT

x=fft(a ,-1) or x=fft(a)

y=fft2(x,n,m) - two-dimension

x=fft(a,-1,dim,incr) - multidimensional fft

fftshift(abs(y)) - rearranges the fft output, moving the zero
frequency to the center of the spectrum

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Fast Fourier Transform

FFT

x=fft(a ,-1) or x=fft(a)

y=fft2(x,n,m) - two-dimension

x=fft(a,-1,dim,incr) - multidimensional fft

fftshift(abs(y)) - rearranges the fft output, moving the zero
frequency to the center of the spectrum

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Fast Fourier Transform

Exercise 1

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Convolution

The convol Command

With the convol command

Without the convol command (multiplying in the frequency
domain)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Convolution

The convol Command

With the convol command

Without the convol command (multiplying in the frequency
domain)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Convolution

Exercise 2

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Plotting

Bode and Pole-Zero Plots

Demo Pole-Zero Plot

Demo Bode Plot

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Plotting

Bode and Pole-Zero Plots

Demo Pole-Zero Plot

Demo Bode Plot

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Group Delay

Group Delay

Rate of change of Phase w.r.t Frequency

�g =
d�

d!

Where,
�g is the Group Delay
� is for phase delay
! is for frequency

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Aliasing

What is Aliasing?

Ambiguity from reconstruction !

Shannon-Nyquist Sampling theorem.

Under-sampling

Scilab commands to remember -

t = soundsec(n [,rate]) - generates n sampled seconds of time
parameter

v = linspace(x1,x2 [,n]) - linearly spaced vector

mtlb hold(flag)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Aliasing

What is Aliasing?

Ambiguity from reconstruction !

Shannon-Nyquist Sampling theorem.

Under-sampling

Scilab commands to remember -

t = soundsec(n [,rate]) - generates n sampled seconds of time
parameter

v = linspace(x1,x2 [,n]) - linearly spaced vector

mtlb hold(flag)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Aliasing

What is Aliasing?

Ambiguity from reconstruction !

Shannon-Nyquist Sampling theorem.

Under-sampling

Scilab commands to remember -

t = soundsec(n [,rate]) - generates n sampled seconds of time
parameter

v = linspace(x1,x2 [,n]) - linearly spaced vector

mtlb hold(flag)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Basic signal processing tools

Aliasing

What is Aliasing?

Ambiguity from reconstruction !

Shannon-Nyquist Sampling theorem.

Under-sampling

Scilab commands to remember -

t = soundsec(n [,rate]) - generates n sampled seconds of time
parameter

v = linspace(x1,x2 [,n]) - linearly spaced vector

mtlb hold(flag)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

First order filter

Second order filter

Observation : More attenuation !

Scilab commands to remember -

ss2tf, tf2ss, dscr - State-Space ¡-¿ Transfer Function,
Discretizing Continuous Systems

r = repfreq(Sys,frq) - Frequency response

playsnd(data)

filtered output = flts(input,filter)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

First order filter

Second order filter

Observation : More attenuation !

Scilab commands to remember -

ss2tf, tf2ss, dscr - State-Space ¡-¿ Transfer Function,
Discretizing Continuous Systems

r = repfreq(Sys,frq) - Frequency response

playsnd(data)

filtered output = flts(input,filter)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

First order filter

Second order filter

Observation : More attenuation !

Scilab commands to remember -

ss2tf, tf2ss, dscr - State-Space ¡-¿ Transfer Function,
Discretizing Continuous Systems

r = repfreq(Sys,frq) - Frequency response

playsnd(data)

filtered output = flts(input,filter)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

First order filter

Second order filter

Observation : More attenuation !

Scilab commands to remember -

ss2tf, tf2ss, dscr - State-Space ¡-¿ Transfer Function,
Discretizing Continuous Systems

r = repfreq(Sys,frq) - Frequency response

playsnd(data)

filtered output = flts(input,filter)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

Analog filter family prototypes

Butterworth

Chebyshev

Inverse Chebyshev

Elliptic/Chauer

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

Analog filter family prototypes

Butterworth

Chebyshev

Inverse Chebyshev

Elliptic/Chauer

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

Analog filter family prototypes

Butterworth

Chebyshev

Inverse Chebyshev

Elliptic/Chauer

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

Analog filter family prototypes

Butterworth

Chebyshev

Inverse Chebyshev

Elliptic/Chauer

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

Butterworth

Passband: Monotonic

Stopband: Monotonic

No ripples

Wide Transition, slow Roll-off

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

Chebyshev

Passband: Equiripple

Stopband: Monotonic

Only ripples in Passband

Lesser Transition width, slow Roll-off at high frequencies

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

Inverse Chebyshev

Passband: Monotonic

Stopband: Equiripple

Only ripples in Stopband

Lesser Transition width, slow Roll-off at low frequencies

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

Elliptic

Passband: Equiripple

Stopband: Equiripple

Ripples in both - Passband and Stopband

Least Transition, sharp and fast Roll-off

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

An example

Steps :

Decide over the filter specifications (type, PB and SB cut-offs,
ripples etc.)

Normalize

Calculate the Order of the filter

Calculate the filter coeffiecients

Implement Analog Transfer function

Perform bilinear transformation

Convert to the needed filter type

Let us design a Low-Pass Chebyshev Filter

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

An example

Steps :

Decide over the filter specifications (type, PB and SB cut-offs,
ripples etc.)

Normalize

Calculate the Order of the filter

Calculate the filter coeffiecients

Implement Analog Transfer function

Perform bilinear transformation

Convert to the needed filter type

Let us design a Low-Pass Chebyshev Filter

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

An example

Steps :

Decide over the filter specifications (type, PB and SB cut-offs,
ripples etc.)

Normalize

Calculate the Order of the filter

Calculate the filter coeffiecients

Implement Analog Transfer function

Perform bilinear transformation

Convert to the needed filter type

Let us design a Low-Pass Chebyshev Filter

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

An example

Steps :

Decide over the filter specifications (type, PB and SB cut-offs,
ripples etc.)

Normalize

Calculate the Order of the filter

Calculate the filter coeffiecients

Implement Analog Transfer function

Perform bilinear transformation

Convert to the needed filter type

Let us design a Low-Pass Chebyshev Filter

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

An example

Steps :

Decide over the filter specifications (type, PB and SB cut-offs,
ripples etc.)

Normalize

Calculate the Order of the filter

Calculate the filter coeffiecients

Implement Analog Transfer function

Perform bilinear transformation

Convert to the needed filter type

Let us design a Low-Pass Chebyshev Filter

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

An example

Steps :

Decide over the filter specifications (type, PB and SB cut-offs,
ripples etc.)

Normalize

Calculate the Order of the filter

Calculate the filter coeffiecients

Implement Analog Transfer function

Perform bilinear transformation

Convert to the needed filter type

Let us design a Low-Pass Chebyshev Filter

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Non-Recipe Based

An example

Steps :

Decide over the filter specifications (type, PB and SB cut-offs,
ripples etc.)

Normalize

Calculate the Order of the filter

Calculate the filter coeffiecients

Implement Analog Transfer function

Perform bilinear transformation

Convert to the needed filter type

Let us design a Low-Pass Chebyshev Filter

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Recipe Based

Scilab Commands in Filter Design

iir - [hz]=iir(n,ftype,fdesign,frq,delta)

eqiir -
[cells,fact,zzeros,zpoles]=eqiir(ftype,approx,om,deltap,deltas)

eqfir - [hn]=eqfir(nf,bedge,des,wate)

wfir - [wft,wfm,fr]=wfir(ftype,forder,cfreq,wtype,fpar)

analpf - [hs,pols,zers,gain]=analpf(n,fdesign,rp,omega)

trans - hzt=trans(pd,zd,gd,tr type,frq)

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

Recipe Based

Exercise 3

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

An Example Application

Audio effects

Flanging - A sound file seems like riding on a wave

Echo - Delayed and added back

Equalizer - Different Frequency Bands

Low
Mid
High

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

An Example Application

Thank you !

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab



Digital Signal Processing and Filter Design using Scilab

Filter Design

An Example Application

Sanjit K. Mitra, “Digital Dignal Processing, A computer based
approach”, Tata McGraw-Hill Edition 1998.

Steven W. Smith, “http://www.dspguide.com/ ”

Carey Bunks, Franc ¸ois Delebecque, Georges Le Vey and
Serge Steer, “Scilab Group INRIA Meta2 Project/ENPC
Cergrene ”, Signal Processing with Scilab.

Iman Mukherjee Digital Signal Processing and Filter Design using Scilab


	Basic signal processing tools
	Discrete Fourier Transform
	Fast Fourier Transform
	Convolution
	Plotting
	Group Delay
	Aliasing

	Filter Design
	Non-Recipe Based
	Recipe Based
	An Example Application


