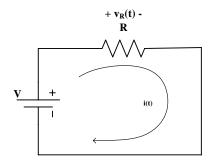
Electrical Circuits Simulation Using Xcos

National Workshop on Scilab Fr. C. Rodrigues Institute of Technology, Vashi

Bу

Vishwesh A. Vyawahare

IDP in Systems and Control Engineering Indian Institute of Technology Bombay

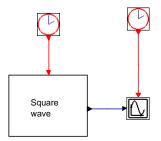

December 1, 2010

- DC source with R without switch.
- Switch logic in Scilab
- DC source with R, RL, RC, and RLC, with switch.
- AC source with RLC with switch.
- Demos of some more complicated ckts.

DC source with R

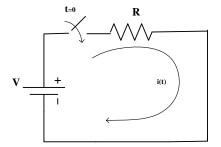
• We have

$$i(t)=rac{V}{R}.$$



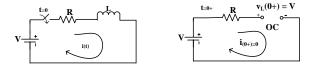
December 1, 2010

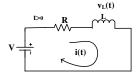
-

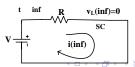

Switch Logic in Scilab

- Opening or closing of switch is an important operation.
- Useful in Power Electronics ckts.
- Adding a switch in the ckt makes the ODE stiff for solving.

DC source with R with Switch


• Memory-less system. Current and voltage change instantaneously after the closing of switch at t = 0.




DC source with RL with Switch

- Current through the inductor cannot change instantaneously.
- At t(0+), inductor \rightarrow Open Circuit $\Rightarrow i_L(0+) = i(0+) = 0$. $v_L(0+) = V$.
- For general t > 0,

$$V = Ri(t) + L\frac{di(t)}{dt}$$

Electrical Circuits Simulation Using Xcos

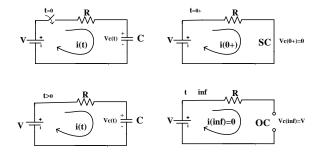
December 1, 2010

DC source with RL with Switch

Expression for current is

$$i(t) = \frac{V}{R} - \frac{V}{R}e^{-\frac{R}{L}t}.$$

• Expression for inductor voltage is


$$v(t) = V e^{-\frac{R}{L}t}.$$

• At steady-state $(t \to \infty)$, inductor acts as a short-circuit, $v_L(\infty) = 0$ and $i(\infty) = \frac{V}{R}$.

DC source with RC with Switch

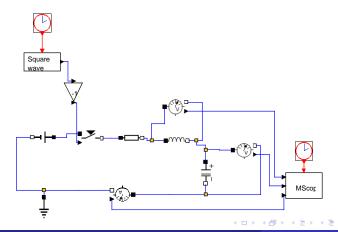
- Voltage across the capacitor cannot change instantaneously.
- At t(0+), capacitor \rightarrow Short Circuit $\Rightarrow v_C(0+) = 0$. $i_C(0+) = i(0+) = \frac{V}{R}$.
- For general t > 0,

$$V=Ri(t)+\frac{1}{C}\int_0^t i(t)dt.$$

DC source with RC with Switch

• Expression for capacitor voltage is

$$v_C(t)=V-Ve^{-\frac{t}{RC}}.$$


• Expression for capacitor current is

$$i(t)=\frac{V}{R}e^{-\frac{t}{RC}}.$$

• At steady-state $(t \to \infty)$, capacitor acts as a open-circuit, $v_C(\infty) = V$ and $i(\infty) = 0$.

DC source with RLC with Switch

- Two storing elements.
- Second-order system.

KVL gives

$$V = Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C}\int_0^t i(t)dt.$$

• The second-order ODE is

$$\frac{d^2i(t)}{dt^2} + \frac{R}{L}\frac{di(t)}{dt} + \frac{1}{LC}i(t) = 0.$$

• At
$$t(0+)$$
, $i(0+) = 0$, $\frac{di}{dt}(0+) = \frac{V}{L} = \frac{v_L(0+)}{L}$.

DC source with RLC with Switch

Using Laplace transform

$$I(s) = \frac{V/L^2}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

- As t→∞, current i(t) will decay to zero. But the way it will decay to zero will be decided by the value of R.
- Equating the denominator polynomial to zero,

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

• The roots are

$$s_{1,2} = \frac{-R/L \pm \sqrt{\frac{R^2}{L^2} - \frac{4}{LC}}}{2}$$

DC source with RLC with Switch

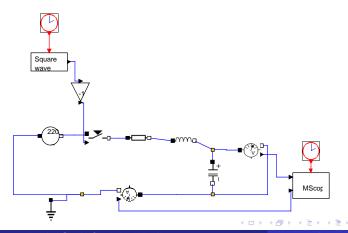
• The transient behaviour of i(t) will be decided by the factor

$$D \doteq \frac{R^2}{L^2} - \frac{4}{LC}(<,>,=)0.$$

• If *D* = 0 then

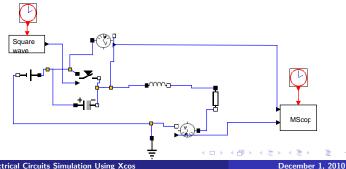
$$R=2\sqrt{\frac{L}{C}}.$$

Response is overdamped.


• If

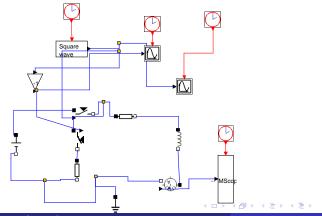
$$R < 2\sqrt{\frac{L}{C}}.$$

Response is underdamped.


AC source with RLC with Switch

- Sinusoidal source connected to a series RLC ckt through the switch.
- Second-order system.

Complicated Networks


- Examples taken from the book: Network Analysis, by M.E. Van Valkenburg, PHI Publishers, New Delhi, 2006.
- Ex. 5-6, Page 132.
- Steady-state is reached with switch closed. At t = 0, the switch is opened. Find voltage across the switch and the value of its first time derivative at t = 0+.

Electrical Circuits Simulation Using Xcos

Complicated Networks

- Ex. 4-1, Page 112.
- Steady-state is reached with switch in position 1. At t = 0, the switch moved from 1 to 2. Find i(t).

Electrical Circuits Simulation Using Xcos