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Introduction

@ The word WAVELET literally means small wave.

@ Wavelets are localised waves and they extend not from - oo to
+ oo but only for a finite duration of time.
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Introduction

@ Since waves extend over the entire space, they do not need
any shift parameter.

@ Thus, a Fourier Transform maps 1-D time signals to 1-D
frequency signals, whereas

@ The wavelet transform maps 1-D time signals to 2-D
scale(frequency) and shift parameter signals.
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Examplel

@ Let us see a program which finds out the approximate
coefficients and detailed coefficients of a given signal.
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Examplel:dwt.sce
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Examplel:dwt.sce

In this Example:
1. x=linspace(-%pi,%pi, 10000);
2. s=sin(x); //Constructs and Elimentary sine wave signal
[cal,cdl] = dwt(s,’haar’); // Perform single-level

discrete wavelet transform of “s* by "haar".

4. The Graph of Apporoximate co-efficients(cA) and Detailed
co-efficient(cD) is Plotted using the plot() command

5. The above procedure is repeated for “db2" type of wavelet.
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Example

1:dwt.png
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Example2:idwt.sce
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Example2:idwt.sce

In this Example:
1. Steps 1,2 and 3 are same as above.
2. ss = idwt(cal,cdl,’haar’); //Perform single-level
inverse discrete wavelet transform, illustrating that idwt is the
inverse function of dwt.

3. The Graph of Apporoximate co-efficients(cA) and Detailed
co-efficient(cD) is Plotted using the plot() command
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Examplel:idwt.png
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Commands : dwt & idwt
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Commands : dwt & idwt

— dwt:Discrete Fast Wavelet Transform

e dwt is for discrete fast wavelet transform with the signal
extension method optional argument.
e As output it gives values of cA : Approximate co-efficients and
cD : Detailed co-efficients

@ For Syntax Detailed help see type "help dwt"

— idwt:Inverse Discrete Fast Wavelet Transform

e idwt is for inverse discrete fast wavelet transform.
o Coefficent could be void vector as '[]' for cA or cD.
e As output it gives a Reconstructed Vector

@ For Syntax Detailed help see type "help idwt"
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Example3:wavelet.sce

Let us Revise the Decomposition Diagram for the wavelets:

D composition:
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Example3:wavelet.sce
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Example3:wavelet.sce

In this Example:
1. s=[1:100];
2. 1.s = length(s)
3. a = sin(2*Ypi*s/100)+sin(3*)pixs/100); //Constructs
and Elimentary sine wave signal
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Example3:wavelet.sce
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Example3:wavelet.sce

The coefficients of all the components of a third-level
decomposition (that is, the third-level approximation and the first
three levels of detail) are returned concatenated into one vector, C.

Vector L gives the lengths of each component.

4. [C,L] = wavedec(a,3,’haar’);
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Example3:wavelet.sce
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Example3:wavelet.sce

To extract the level 3 approximation coefficients from C, type:

5. cA3 = appcoef(C,L,’haar’,3);

To extract the levels 3, 2, and 1 detail coefficients from C, type

6. cD3 = detcoef(C,L,3);
7. cD2 = detcoef(C,L,2);
8. ¢cD1 = detcoef(C,L,1);

The above can be written in one command as:

9. [cD1,cD2,cD3] = detcoef(C,L,[1,2,3]);
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Example3:wavelet.sce
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Example3:wavelet.sce

To reconstruct the level 3 approximation from C, type

10. A3 = wrcoef(’a’,C,L,’haar’,3);

To reconstruct the details at levels 1, 2, and 3, from C, type

11. D1 = wrcoef(’d’,C,L,’haar’,1);
12. D2 = wrcoef(’d’,C,L,’haar’,2);
13. D3 = wrcoef(’d’,C,L,’haar’,3);
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Examplel:wavelet.sce
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Examplel:wavelet.sce

Display the results of a multilevel decomposition
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wavelet.sce
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wavelet.sce

To reconstruct the original signal from the wavelet decomposition
structure, type

14. A3 = waverec(C,L,’haar’);

Of course, in discarding all the high-frequency information, we've
also lost many of the original signal’s sharpest features.
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Original Vs Approximate
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Original Vs Approximate

To compare the approximation to the original signal, type
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Commands Used
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Commands Used

The commands used in the Multi-level Decomposition and
Construction of Approximate and Detailed Coefficients are:

* wavedec: Multiple Level Discrete Fast Wavelet
Transform

* waverec: Multiple Level Inverse Discrete Fast
Wavelet Transform

* appcoef: 0One Dimension Approximation Coefficent
Reconstruction

+x detcoef: One Dimension Detail Coefficent
Extraction

* wrcoef: Restruction from single branch from
multiple level
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Please type help command_name to see the Usage, Description
and Examples for that particular command.
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Further Exploration
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Further Exploration

Optimal de-noising requires a more subtle approach called
thresholding.
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Further Exploration

Optimal de-noising requires a more subtle approach called
thresholding.

This involves discarding only the portion of the details that exceeds
a certain limit.
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Thank Youl!!

@ Thank Youl!
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