Hands-on Session: Fractional Calculus and Fractional Differential Equations with SCILAB

Scilab and Its Applications to Global Optimization and Fractional Differential Equations SGGS IE \& T, Nanded, April 23-25, 2010

By

Vishwesh Anant Vyawahare

Systems and Control Engineering Indian Institute Of Technology Bombay

April 25, 2010

Fractional Derivative: Successive Differentiation

- n th-order derivative of t^{n} (n is integer)

$$
\frac{d^{n}}{d t^{n}} t^{n}=n!
$$

- n th-order derivative of t^{m}, m, n integers, $m>n$ is

$$
\frac{d^{n}}{d t^{n}} t^{m}=\frac{m!}{(m-n)!} t^{m-n}
$$

- Use the Euler's Gamma function (Γ) property,

$$
n!=\Gamma(n+1)
$$

- So we can re-write

$$
\frac{d^{n}}{d t^{n}} t^{m}=\frac{\Gamma(m+1)}{\Gamma(m-n+1)} t^{m-n}
$$

- Gamma function is defined for positive and negative reals (except for negative integers and zero). So we let m and n to be reals.

Fractional Derivative: Successive Differentiation

- We define fractional derivative of order $\alpha \in \mathbf{R}, \alpha \geq 0$, of $t^{\mu}, \mu \in \mathbf{R}$:

$$
\frac{d^{\alpha}}{d t^{\alpha}} t^{\mu}:=D_{t}^{\alpha} t^{\mu}=\frac{\Gamma(\mu+1)}{\Gamma(\mu-\alpha+1)} t^{\mu-\alpha}
$$

- Here the condition $\mu>\alpha$ can be relaxed.
- Let's Start!!
(1)

$$
\frac{d^{0.5}}{d t^{0.5}} t^{0.5}=\Gamma(1+0.5)=\Gamma(1.5)
$$

(2)

$$
\frac{d^{0.5}}{d t^{0.5}} t=\frac{1}{\Gamma(1.5)} t^{0.5}
$$

(3)

$$
\frac{d^{0.5}}{d t^{0.5}}(1)=\frac{1}{\sqrt{\pi t}} \neq 0
$$

Exercise 1

(1) We wish to find the 0.6 th-order derivative of $t^{2.7}$.
(2) Take time interval $t=[0: 0.01: 5]$.
(3) Write a code in Scilab. Store the derivative in the variable fracd.
(9) Plot:
(1) $t^{2.7}$ and $D^{0.6}\left(t^{2.7}\right)$ on the same plot.
(2) First derivative and $D^{0.6}$ of $t^{2.7}$ on the same plot.

Mittag-Leffler Function of One Variable

- Important function in fractional calculus.
- Generalization of the exponential $\left(e^{t}\right)$ function.
- It is given as:

$$
E_{\alpha}(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{\Gamma(\alpha k+1)}, \quad \alpha>0
$$

- Note that $E_{1}(t)=e^{t}$.

Exercise 2

- ML function is

$$
E_{\alpha}(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{\Gamma(\alpha k+1)}, \quad \alpha>0
$$

- Write a code to calculate the ML function.
- Take time interval $t=[0: 0.01: 5]$.
- Take upper limit for the summation $M=100$.
- Take various values of α.
- Plot $E_{\alpha}(t)$.
- Check for $\alpha=1$ you get the exponential curve.

Mittag-Leffler Function of Two Variables

- Extension of the ML function of one variable.
- It is given as:

$$
E_{\alpha, \beta}(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{\Gamma(\alpha k+\beta)}, \quad \alpha>0, \beta>0 .
$$

- Note that $E_{1,1}(t)=e^{t}$.

Exercise 3

- ML function of two variables is

$$
E_{\alpha, \beta}(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{\Gamma(\alpha k+\beta)}, \quad \alpha>0
$$

- Write a code to calculate the ML2 function.
- Take time interval $t=[0: 0.01: 5]$.
- Take upper limit for the summation $M=100$.
- Try various combinations of α and β.
- Plot $E_{\alpha, \beta}(t)$.
- Check for $\alpha=\beta=1$ you get the exponential curve.

Exercise 4: Solution of Fractional Oscillator Equation

- Fractional Oscillator is the generalization of Harmonic Oscillator.

$$
\frac{d^{\alpha}}{d t^{\alpha}} y(t)+\omega^{\alpha-\beta} \frac{d^{\beta}}{d t^{\beta}} y(t)=0
$$

where $1 \leq \alpha \leq 2$, and $0 \leq \beta \leq 1$.

- Initial conditions are $y(0)=0$, and $\frac{d y}{d t}(0)=0$.
- Its solution for $\beta=0$ is:

$$
y(t)=t E_{\alpha, 2}\left(-\omega^{2} t^{\alpha}\right)
$$

- Here

$$
E_{\alpha, 2}\left(-\omega^{2} t^{\alpha}\right)=\sum_{k=0}^{\infty} \frac{\left(-\omega^{2} t^{\alpha}\right)^{k}}{\Gamma(\alpha k+2)}
$$

- Write a code to plot $y(t)$ for $\alpha=1.85$, and $\omega=1$.

Exercise 5: Grünwald-Letnikov (GL) Fractional Derivative

- This definition of fractional derivative is based on the generalization of backward difference rule.

$$
D_{G L}^{\alpha} f(t):=h^{-\alpha} \sum_{j=0}^{[t / h]}(-1)^{j}\binom{\alpha}{j} f(t-j h)
$$

- For $f(t)=t$, find the GL fractional derivative at points $t=0, t=1$, and $t=10$. Take $h=0.1$.
- For the same $f(t)$, now evaluate it over the time interval $[0: h: 5]$.

