Hands-on Session: Fractional Calculus and Fractional Differential Equations with SCILAB Scilab and Its Applications to Global Optimization and Fractional Differential Equations SGGS IE & T, Nanded, April 23-25, 2010

By

Vishwesh Anant Vyawahare

Systems and Control Engineering Indian Institute Of Technology Bombay

April 25, 2010

Hands-on Session: Fractional Calculus and Fractional Differential Equations with SCILAB

Fractional Derivative: Successive Differentiation

• *n*th-order derivative of t^n (*n* is integer)

$$\frac{d^n}{dt^n}t^n = n!$$

• *n*th-order derivative of t^m , m, n integers, m > n is

$$\frac{d^n}{dt^n}t^m = \frac{m!}{(m-n)!}t^{m-n}$$

Use the Euler's Gamma function (Γ) property,

$$n! = \Gamma(n+1)$$

So we can re-write

$$\frac{d^n}{dt^n}t^m = \frac{\Gamma(m+1)}{\Gamma(m-n+1)}t^{m-n}$$

• Gamma function is defined for positive and negative reals (except for negative integers and zero). So we let *m* and *n* to be reals.

Fractional Derivative: Successive Differentiation

• We define fractional derivative of order $\alpha \in \mathbf{R}$, $\alpha \geq 0$, of t^{μ} , $\mu \in \mathbf{R}$:

$$rac{d^lpha}{dt^lpha}t^\mu:=D^lpha_tt^\mu=rac{{\sf \Gamma}(\mu+1)}{{\sf \Gamma}(\mu-lpha+1)}t^{\mu-lpha}$$

• Here the condition $\mu > \alpha$ can be relaxed.

Let's Start!!

1

2

3

$$\frac{d^{0.5}}{dt^{0.5}}t^{0.5} = \Gamma(1+0.5) = \Gamma(1.5)$$

$$\frac{d^{0.5}}{dt^{0.5}}t = \frac{1}{\Gamma(1.5)}t^{0.5}$$

$$rac{d^{0.5}}{dt^{0.5}}(1) = rac{1}{\sqrt{\pi t}}
eq 0$$

- We wish to find the 0.6th-order derivative of $t^{2.7}$.
- 2 Take time interval t = [0:0.01:5].
- Write a code in Scilab. Store the derivative in the variable fracd.Plot:
 - $t^{2.7}$ and $D^{0.6}(t^{2.7})$ on the same plot.
 - **2** First derivative and $D^{0.6}$ of $t^{2.7}$ on the same plot.

- Important function in fractional calculus.
- Generalization of the exponential (e^t) function.
- It is given as:

$${\sf E}_lpha(t) = \sum_{k=0}^\infty rac{t^k}{\Gamma(lpha k+1)}, \quad lpha > 0.$$

• Note that $E_1(t) = e^t$.

ML function is

$$E_{lpha}(t) = \sum_{k=0}^{\infty} rac{t^k}{\Gamma(lpha k+1)}, \quad lpha > 0.$$

- Write a code to calculate the ML function.
- Take time interval t = [0: 0.01: 5].
- Take upper limit for the summation M = 100.
- Take various values of α .
- Plot $E_{\alpha}(t)$.
- Check for $\alpha = 1$ you get the exponential curve.

- Extension of the ML function of one variable.
- It is given as:

$$E_{lpha,eta}(t) = \sum_{k=0}^{\infty} rac{t^k}{\Gamma(lpha k + eta)}, \quad lpha > 0, eta > 0.$$

• Note that $E_{1,1}(t) = e^t$.

• ML function of two variables is

$$E_{lpha,eta}(t) = \sum_{k=0}^{\infty} rac{t^k}{\Gamma(lpha k + eta)}, \quad lpha > 0.$$

- Write a code to calculate the ML2 function.
- Take time interval t = [0: 0.01: 5].
- Take upper limit for the summation M = 100.
- Try various combinations of α and β .
- Plot $E_{\alpha,\beta}(t)$.
- Check for $\alpha=\beta=1$ you get the exponential curve.

Exercise 4: Solution of Fractional Oscillator Equation

• Fractional Oscillator is the generalization of Harmonic Oscillator.

$$rac{d^lpha}{dt^lpha}y(t)+\omega^{lpha-eta}rac{d^eta}{dt^eta}y(t)=0$$

where $1 \le \alpha \le 2$, and $0 \le \beta \le 1$.

- Initial conditions are y(0) = 0, and $\frac{dy}{dt}(0) = 0$.
- Its solution for $\beta = 0$ is:

$$y(t) = tE_{\alpha,2}(-\omega^2 t^{\alpha})$$

Here

$$E_{\alpha,2}(-\omega^2 t^{\alpha}) = \sum_{k=0}^{\infty} \frac{(-\omega^2 t^{\alpha})^k}{\Gamma(\alpha k+2)}.$$

• Write a code to plot
$$y(t)$$
 for $\alpha = 1.85$, and $\omega = 1$.

• This definition of fractional derivative is based on the generalization of **backward difference rule**.

$$D_{GL}^{\alpha}f(t) := h^{-\alpha} \sum_{j=0}^{\lfloor t/h \rfloor} (-1)^j \binom{\alpha}{j} f(t-jh).$$

- For f(t) = t, find the GL fractional derivative at points t = 0, t = 1, and t = 10. Take h = 0.1.
- For the same f(t), now evaluate it over the time interval [0: h: 5].