Range Computation of Polynomial Problems using the Bernstein Form

Prof. P.S.V. Nataraj
IDP in Systems and Control Engineering IIT Bombay

Outline

- Introduction
- Bernstein form
- Degree elevation of the Bernstein form
- Vertex property
- Subdivision of the Bernstein form

Introduction

- Various qualitative decision issues (min. cost, max. profit, etc), from science and engineering can be perceived as optimization problems.
- General optimization problem formulation is

$$
\begin{array}{cc}
& \min _{x} f(x) \\
\text { s.t. } & h_{i}(x)=0, i=1,2, \ldots, m \\
& g_{j}(x) \leq 0, j=1,2, \ldots, n
\end{array}
$$

- Minimize above problem globally

Cont...

- An optimization problem can be reduced to the problem of computing the sharp range of polynomials in several variables on box-like domains.
- We solve the problem of finding the sharp range which encloses global minimum using the Bernstein form of polynomials.
- The Bernstein coefficients of the expansion provide the lower and upper bounds for the range of the polynomial.
- We can perform subdivision of the original box for faster convergence of the range.

Bernstein Form

- Consider the $\boldsymbol{n}^{\text {th }}$ degree polynomial \boldsymbol{p} in a single variable $x \in \mathrm{U}=[0,1]$

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

- Bernstein form of order \boldsymbol{k} is

$$
p(x)=\sum_{j=0}^{k} b_{j}^{k} B_{j}^{k}(x), \quad k \geq n
$$

- $B_{j}^{k}(x)$ are the Bernstein basis polynomials of degree \boldsymbol{k}

Cont...

- b_{j}^{k} are the Bernstein coefficients

$$
b_{j}^{k}=\sum_{i=0}^{j} a_{i} \frac{\binom{j}{i}}{\binom{k}{i}}
$$

- The unit interval is not really a restriction as any finite interval \mathbf{X} can be linearly transformed to it.

Properties of Bernstein Coefficients

The range enclosure property of the Bernstein Form

- The Bernstein coefficients provide bounds for range \boldsymbol{p} of over $\mathbf{U}=[0,1]$.
- Lemma 1 (Range lemma) (Cargo and Shisha, 1966): The range $\bar{p}([0,1])$ is bounded by the Bernstein coefficients as:

$$
\bar{p}([0,1]) \subseteq\left[\min _{j} b_{j}^{k}, \max _{j} b_{j}^{k}\right]
$$

- Convex hull property:

$$
\begin{aligned}
& \operatorname{conv}\{(x, p(x))\} \subseteq \operatorname{conv}\left\{\left(I / N, b_{I}(\mathrm{U})\right): I \in S_{0}\right\} \\
\text { where } \quad & S_{0}=\left\{0, n_{1}\right\} \times\left\{0, n_{2}\right\} \times \ldots \times\left\{0, n_{l}\right\}
\end{aligned}
$$

Cont...

Figure: The polynomial function, its Bernstein coefficients, and the convex hull

Illustration

To illustrate the Bernstein approach for bounding the ranges of polynomials consider the simple polynomial

$$
p(x)=x(1-x)
$$

whose range $\bar{p}([0,1])$ is $\left[0, \frac{1}{4}\right]$.

- In the Bernstein approach, put polynomial in standard sums of power form

$$
p(x)=\sum_{i=0}^{n} a_{i} x_{i}
$$

where

$$
n=2, a_{0}=0, a_{1}=1, a_{2}=-1
$$

Cont...

- For $k=2$ this gives

$$
b_{0}^{2}=0, \quad b_{1}^{2}=\frac{1}{2}, \quad b_{2}^{2}=0
$$

so that

$$
\min _{j} b_{j}^{2}=0, \quad \max _{j} b_{j}^{2}=\frac{1}{2}
$$

- Range lemma implies

$$
\bar{p}([0,1]) \subseteq\left[0, \frac{1}{2}\right]
$$

Vertex Property of Bernstein Form

- Remarkable feature: Bernstein from provides us with a criterion to indicate if calculated estimation is range or not.
- Cargo and Shisha (1966) give such a criterion based on the vertex property.
- The upper bound or lower bound is sharp if and only if $\min b_{j}^{k}(\mathrm{U})_{I \in S_{0}}$ (resp. $\max b_{j}^{k}(\mathrm{U})_{I \in S_{0}}$) is attained at the indices of vertices of Bernstein coefficient array ($B(\mathrm{U})$).

Cont...

Lemma 2 (Vertex lemma)

$$
\bar{p}([0,1])=\left[\min _{j} b_{j}^{k}, \max _{j} b_{j}^{k}\right]
$$

if and only if

$$
\min _{j} b_{j}^{k}=\min \left\{b_{0}^{k}, b_{k}^{k}\right\}
$$

and

$$
\max _{j} b_{j}^{k}=\max \left\{b_{0}^{k}, b_{k}^{k}\right\}
$$

- Vertex lemma also holds for any subinterval of $[0,1]$.

Illustration

- Consider again the simple polynomial

$$
p(x)=x(1-x)
$$

whose range $\bar{p}([0,1])$ is $\left[0, \frac{1}{4}\right]$.

- For $k=4$, Bernstein coefficients are

$$
b_{0}^{4}=0, \quad b_{1}^{4}=\frac{1}{4}, \quad b_{2}^{4}=\frac{1}{3}, \quad b_{3}^{4}=\frac{1}{4}, \quad b_{4}^{4}=0
$$

- Range lemma gives

$$
\bar{p}([0,1]) \subseteq\left[0, \frac{1}{3}\right]
$$

Cont...

- Check if above enclosure is the range itself or not.
- How? Apply Vertex lemma
- Minimum Bernstein coefficient is b_{0}^{4} or b_{4}^{4} - occurs at vertices $j \in\{0,4\}$.
- Maximum Bernstein coefficient is b_{2}^{4}, occurs at $j=2$ that is not a vertex.
- Vertex lemma is satisfied for the minimum,
- Vertex lemma is not satisfied for the maximum as $\max _{j} b_{j}^{k} \neq \max \left\{b_{0}^{4}, b_{4}^{4}\right\}$.
- So, by vertex lemma, above enclosure is not the range.

Cont...

- Now, we check if any of the range enclosures obtained in previous table for elevated degree of Bernstein form is range or not.
- Table is reproduced below.

Degree k	Range Enclosure	index j for $\min b_{j}^{k}$	index j for $\max b_{j}^{k}$	Range overestimation
2	$[0,0.5]$	0	1	0.2500
3	$0, \frac{1}{3}$	0	1	0.0833
4	$\left.0, \frac{1}{3}\right]$	0	2	0.0833
5	$[0,0.3]$	0	2	0.0500
6	$[0,0.3]$	0	3	0.0500
7	$[0,0.2857]$	0	3	0.0357
10	$[0,0.2778]$	0	5	0.0278
20	$[0,0.2632]$	0	10	0.0132
30	$[0,0.2586]$	0	15	0.0086
100	$[0,0.2525]$	0	50	0.0025
1000	$[0,0.2503]$	0	500	0.00025

Cont...

- We find from the table that for any k, the index j for $\max b_{j}^{k}$ (in column 4) is not from the vertex set $\{0, k\}$.
- By vertex lemma, none of the enclosures in column 2 is the range!

Subdivision of Bernstein Form

- A generally more efficient approach than degree elevation of the Bernstein form is subdivision.
- Let $\mathbf{D}=[\underline{d}, \vec{d}] \subseteq \mathbf{U}$ and assume we have already the Bernstein coefficients on \mathbf{D}.
- Suppose D is bisected to produce two subintervals \mathbf{D}_{A} and \mathbf{D}_{B} given by

$$
\mathbf{D}_{A}=[\underline{d}, m(\mathbf{D})] ; \mathbf{D}_{B}=[m(\mathbf{D}), d]
$$

Cont...

- Then, the Bernstein coefficients on the subintervals \mathbf{D}_{A} and \mathbf{D}_{B} can be obtained from those on \mathbf{D}, by executing the following algorithm.

Subdivision Algorithm

- Inputs: The interval $\mathrm{D} \subseteq \mathrm{U}$ and its Bernstein coefficients (b_{j}^{k}).
- Outputs: Subintervals D_{A} and D_{B} and their Bernstein coefficients \tilde{b}_{j}^{k} and \hat{b}_{j}^{k}

START

- Bisect D to produce the two subintervals D_{A} and D_{B}.
- Compute the Bernstein coefficients on subinterval D_{A} as follows.
(a) Set: $b_{j}^{k} \leftarrow \bar{b}_{j}^{k}$, for $j=0,1, \ldots, k$
(b) For $i=1,2, \ldots, k$ DO

$$
\mathrm{b}_{j}^{k}= \begin{cases}b_{j}^{i-1} & \text { for } j<i \\ \frac{1}{2}\left\{b_{j-1}^{i-1}+b_{j}^{i-1}\right\} & \text { for } j \geq i\end{cases}
$$

Cont...

To obtain the new coefficients apply formula in (b) for $j=0,1, \ldots, k$.

- Find the Bernstein coefficients on subinterval D_{A} as

$$
\tilde{b}_{j}{ }^{k}=b_{j}{ }^{k}, \quad \text { for } j=0,1, \ldots, k
$$

- Find the Bernstein coefficients on subinterval D_{B} from intermediate values in above step, as follows.

$$
\widehat{b}_{j}{ }^{k}=b_{k}{ }^{j}, \quad \text { for } j=0,1, \ldots, k
$$

- Return $\mathrm{D}_{A}, \mathrm{D}_{B}$ and the associated Bernstein coefficients $\tilde{b}_{j}{ }^{k}$ and $\widehat{b}_{j}{ }^{k}$. END

Illustration

- Let us run through Algorithm Subdivision for Example 1.
- For $k=4$, we have already the Bernstein coefficients \bar{b}_{j}^{k} for the interval $\mathbf{D}=[0,1]$.
- With these as the inputs to Algorithm subdivision, the results at the various steps are

Cont...

- step 1: \mathbf{D} is bisected to produce two subintervals
$\mathbf{D}_{A}=[0,0.5]$ and $\mathbf{D}_{B}=[0.5,1]$.
- step 2: The Bernstein coefficients on subinterval
\mathbf{D}_{A} are computed as follows.
- step 2a: Set : $b_{j}^{0} \leftarrow \bar{b}_{j}^{4}$, for $j=0, \ldots, 4$,

$$
\begin{aligned}
& b_{0}^{0}=\bar{b}_{0}^{4}=0 ; \\
& b_{1}^{0}=\bar{b}_{1}^{4}=\frac{1}{4} ; \\
& b_{2}^{0}=\bar{b}_{2}^{4}=\frac{1}{3} ; \\
& b_{3}^{0}=\bar{b}_{3}^{4}=\frac{1}{4} ; \\
& b_{4}^{0}=\bar{b}_{4}^{4}=0
\end{aligned}
$$

Cont...

- step 2b:
* for $i=1$:

$$
\begin{aligned}
& b_{0}^{1}=b_{0}^{0}=0 \\
& b_{1}^{1}=\frac{1}{2}\left(b_{0}^{0}+b_{1}^{0}\right)=\frac{1}{2}\left(0+\frac{1}{4}\right)=\frac{1}{8} \\
& b_{2}^{1}=\frac{1}{2}\left(b_{1}^{0}+b_{2}^{0}\right)=\frac{1}{2}\left(\frac{1}{4}+\frac{1}{3}\right)=\frac{7}{24} \\
& b_{3}^{1}=\frac{1}{2}\left(b_{2}^{0}+b_{3}^{0}\right)=\frac{1}{2}\left(\frac{1}{3}+\frac{1}{4}\right)=\frac{7}{24} \\
& b_{4}^{1}=\frac{1}{2}\left(b_{3}^{0}+b_{4}^{0}\right)=\frac{1}{2}\left(\frac{1}{4}+0\right)=\frac{1}{8}
\end{aligned}
$$

Cont...

* for $i=2$:

$$
\begin{aligned}
& b_{0}^{2}=b_{0}^{1}=0 \\
& b_{1}^{2}=b_{1}^{1}=\frac{1}{8} \\
& b_{2}^{2}=\frac{1}{2}\left(b_{1}^{1}+b_{2}^{1}\right)=\frac{1}{2}\left(\frac{1}{8}+\frac{7}{24}\right)=\frac{10}{48} \\
& b_{3}^{2}=\frac{1}{2}\left(b_{2}^{1}+b_{3}^{1}\right)=\frac{1}{2}\left(\frac{7}{24}+\frac{7}{24}\right)=\frac{7}{24} \\
& b_{4}^{2}=\frac{1}{2}\left(b_{3}^{1}+b_{4}^{1}\right)=\frac{1}{2}\left(\frac{7}{24}+\frac{1}{8}\right)=\frac{10}{48}
\end{aligned}
$$

Cont...

* for $i=3$:

$$
\left.\begin{array}{l}
b_{0}^{3}=b_{0}^{2}=0 \\
b_{1}^{3}=b_{1}^{2}=\frac{1}{8} \\
b_{2}^{3}=b_{2}^{2}=\frac{10}{48} \\
b_{3}^{3}=\frac{1}{2}\left(b_{2}^{2}+b_{3}^{2}\right)=\frac{1}{2}\left(\frac{10}{48}+\frac{7}{24}\right)=\frac{1}{4} \\
b_{4}^{3}
\end{array}=\frac{1}{2}\left(b_{3}^{2}+b_{4}^{2}\right)=\frac{1}{2}\left(\frac{7}{24}+\frac{10}{48}\right)=\frac{1}{4}\right) ~ l
$$

Cont...

* for $i=4$:

$$
\begin{aligned}
b_{0}^{4} & =b_{0}^{3}=0 \\
b_{1}^{4} & =b_{1}^{3}=\frac{1}{8} \\
b_{2}^{4} & =b_{2}^{3}=\frac{10}{48} \\
b_{3}^{4} & =b_{3}^{3}=\frac{1}{4} \\
b_{4}^{4} & =\frac{1}{2}\left(b_{3}^{3}+b_{4}^{3}\right)=\frac{1}{2}\left(\frac{1}{4}+\frac{1}{4}\right)=\frac{1}{4}
\end{aligned}
$$

COnt゙ロпп

- Step 2c: The Bernstein coefficients on the subinterval \mathbf{D}_{A} are

$$
\begin{array}{ll}
\tilde{b}_{0}^{4}=b_{0}^{4}=0 ; \quad \tilde{b}_{1}^{4}=b_{1}^{4}=\frac{1}{8} ; \quad \tilde{b}_{2}^{4}=b_{2}^{4}=\frac{10}{48} \\
\tilde{b}_{3}^{4}=b_{3}^{4}=\frac{1}{4} ; \quad \tilde{b}_{4}^{4}=b_{4}^{4}=\frac{1}{4} &
\end{array}
$$

- step 3: The Bernstein coefficients on the neighboring subinterval \mathbf{D}_{B} are

$$
\begin{array}{ll}
\hat{b}_{0}^{4}=b_{4}^{0}=0 ; & \hat{b}_{1}^{4}=b_{4}^{1}=\frac{1}{8} ; \quad \hat{b}_{2}^{4}=b_{4}^{2}=\frac{10}{48} ; \\
\hat{b}_{3}^{4}=b_{4}^{3}=\frac{1}{4} ; \quad \hat{b}_{4}^{4}=b_{4}^{4}=\frac{1}{4}
\end{array}
$$

Cont...

- step 4: Finally,
- For subinterval \mathbf{D}_{A}, Bernstein coefficients are

$$
\left(0, \frac{1}{8}, \frac{10}{48}, \frac{1}{4}, \frac{1}{4}\right)
$$

- For subinterval \mathbf{D}_{B}, Bernstein coefficients are

$$
\left(0, \frac{1}{8}, \frac{10}{48}, \frac{1}{4}, \frac{1}{4}\right)
$$

- It is coincidental here that Bernstein coefficients for both the subintervals are the same.

Cont...

- By range lemma

$$
\begin{aligned}
& \bar{p}\left(\mathbf{D}_{A}\right) \subseteq\left[0, \frac{1}{4}\right] \\
& \bar{p}\left(\mathbf{D}_{B}\right) \subseteq\left[0, \frac{1}{4}\right]
\end{aligned}
$$

Bernstein Subdivision

- Consider the Bernstein coefficients given a few slides earlier.
- For subinterval \mathbf{D}_{A},
- The minimum Bernstein coefficient is \tilde{b}_{0}^{4}
- The maximum Bernstein coefficient is \hat{b}_{4}^{4}.
- Both these occur at the vertices, i.e., for $j \in\{0,4\}$.
- By the vertex lemma, the range of $\bar{p}\left(\mathbf{D}_{A}\right)$ is $\left[0, \frac{1}{4}\right]$.

Cont...

- An identical situation holds for other subinterval \mathbf{D}_{B}.
- Thus, we obtain the range $\bar{p}([0,1])=\left[0, \frac{1}{4}\right]$.
- In this example, using just one subdivision and application of the vertex lemma to the subintervals, we have been able to obtain the range of the given polynomial.
- We are also able to assert that obtained enclosure is indeed the range.

Cont...

- It was not possible to get the range through degree elevation, even with Bernstein form of as high a degree as $k=1000$.
- From Table 1, this high degree Bernstein form still produced an overestimation of about $2.5 e-04$!

