Mathematics in ETEX

Dr. V. Sasi Kumar

FSF India
September 16, 2009

The Mathematics Environment

Typesetting Mathematics

Donald Knuth created TEX primarily to typeset mathematics beautifully.
WTEX sunnorts the full range of capabilities of TEX in mathematics. Additional packages like amsmath refine and enhance the interfaces in ATEX.

The Mathematics Environment

Typesetting Mathematics

Donald Knuth created $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ primarily to typeset mathematics beautifully.
ATEX supports the full range of capabilities of TEX in mathematics. Additional packages like amsmath refine and enhance the interfaces in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

The Mathematics Environment

Typesetting Mathematics

Donald Knuth created $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ primarily to typeset mathematics beautifully.
ETEX supports the full range of capabilities of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ in mathematics.
Additional packages like amsmath refine and enhance the
interfaces in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$.

The Mathematics Environment

Typesetting Mathematics

Donald Knuth created $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ primarily to typeset mathematics beautifully.
ETEX supports the full range of capabilities of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ in mathematics.
Additional packages like amsmath refine and enhance the interfaces in $\mathrm{ETEX}_{\mathrm{E}} \mathrm{X}$.

The Mathematics Environment

Typesetting Mathematics

There are two ways in which mathematics can be included in a document:

- displayed maths

The Mathematics Environment

Typesetting Mathematics

There are two ways in which mathematics can be included in a document:

- inline maths

The general form of the equation of a straight line may be written as $a x+b y+c=0$

- displaved maths

The Mathematics Environment

Typesetting Mathematics

There are two ways in which mathematics can be included in a document:

- inline maths

The general form of the equation of a straight line may be written as $a x+b y+c=0$

The Mathematics Environment

Typesetting Mathematics

There are two ways in which mathematics can be included in a document:

- inline maths

The general form of the equation of a straight line may be written as $a x+b y+c=0$

- displayed maths

The general form of the equation of a straight line may be written as

The Mathematics Environment

Typesetting Mathematics

There are two ways in which mathematics can be included in a document:

- inline maths

The general form of the equation of a straight line may be written as $a x+b y+c=0$

- displayed maths

The general form of the equation of a straight line may be written as

$$
a x+b y+c=0
$$

The Mathematics Environment

Typesetting Mathematics

Inline maths can be typeset like this:

```
The general form of the equation of a straight
line may be written as $ax+by+c=0$
```

and Displayed maths like this:

```
The general form of the equation of a straight
line may be written as $$ax+by+c=0$$
```

This is the TEX way of typesetting equations.

The Mathematics Environment

Typesetting Mathematics

Inline maths can be typeset like this:

```
The general form of the equation of a straight
line may be written as $ax+by+c=0$
```

and Displayed maths like this:

```
The general form of the equation of a straight
line may be written as $$ax+by+c=0$$
```

This is the TEX way of typesetting equations.

The Mathematics Environment

Typesetting Mathematics

Inline maths can be typeset like this:

> The general form of the equation of a straight line may be written as $\$ a x+b y+c=0 \$$
and Displayed maths like this:

```
The general form of the equation of a straight
line may be written as $$ax+by+c=n$\phi
```


The Mathematics Environment

Typesetting Mathematics

Inline maths can be typeset like this:

The general form of the equation of a straight
line may be written as $\$ \mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ \$
and Displayed maths like this:

```
The general form of the equation of a straight
line may be written as $$ax+by+c=0$$
```


The Mathematics Environment

Typesetting Mathematics

Inline maths can be typeset like this:

The general form of the equation of a straight line may be written as $\$ \mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ \$

and Displayed maths like this:

> The general form of the equation of a straight line may be written as $\$ \$ a x+b y+c=0 \$ \$$

This is the $T_{E} \mathrm{X}$ way of typesetting equations.

The Mathematics Environment

Typesetting Mathematics

Inline maths can be typeset like this:

The general form of the equation of a straight line may be written as $\$ \mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ \$
and Displayed maths like this:
The general form of the equation of a straight line may be written as $\$ \$ a x+b y+c=0 \$ \$$

This is the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ way of typesetting equations.

The Mathematics Environment

Typesetting Mathematics

Alternatively, inline maths can be written like this:

```
The general form of the equation of
a straight line may be written as
\ ( a x + b y + c = 0 \ )
```

and Displayed maths like this:

```
The general form of the equation of a
```

straight line may be written as
\ $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ \]

The Mathematics Environment

Typesetting Mathematics

Alternatively, inline maths can be written like this:

```
The general form of the equation of
a straight line may be written as
\ ( a x + b y + c = 0 \ )
```

and Displayed maths like this:

```
The general form of the equation of a
```

straight line may be written as
\ $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ \]

The Mathematics Environment

Typesetting Mathematics

Alternatively, inline maths can be written like this:

```
The general form of the equation of
a straight line may be written as
\ ( a x + b y + c = 0 \ )
```

and Displayed maths like this:
The general form of the equation of a

$\backslash[a x+b y+c=0 \backslash]$

The Mathematics Environment

Typesetting Mathematics

Alternatively, inline maths can be written like this:

```
The general form of the equation of
a straight line may be written as
\ ( a x + b y + c = 0 \ )
```

and Displayed maths like this:
The general form of the equation of a straight line may be written as
$\backslash[a x+b y+c=0 \backslash]$

The Mathematics Environment

Typesetting Mathematics

By using the amsmath package, we can also use the equation environment:

```
The general form of the equation of a
straight line may be written as
\begin{equation}
ax+by+c=0
\end{equation}
```


The Mathematics Environment

Typesetting Mathematics

Now let us take a closer look at this:

> The general form of the equation of a straight line may be written as \backslash begin\{equation\} $a x+b y+c=0$ \end\{equation\} where } \$ \mathrm { a } , \mathrm { b } , \mathrm { c } \$ are constants.

```
The general form of the equation of a straight line may be
written as
where \(a, b, c\) are constants.

\section*{The Mathematics Environment}

\section*{Typesetting Mathematics}

Now let us take a closer look at this:

> The general form of the equation of a straight line may be written as \(\backslash\) begin\{equation\} \(a x+b y+c=0\) \end\{equation\} where } \$ \mathrm { a } , \mathrm { b } , \mathrm { c } \$ \text { are constants. }
```

The general form of the equation of a straight line may be
written as
where a, b, c are constants.

The Mathematics Environment

Typesetting Mathematics

Now let us take a closer look at this:
The general form of the equation of a straight line may be written as \backslash begin\{equation\} $a x+b y+c=0$ \end\{equation\} where } \$ \mathrm { a } , \mathrm { b } , \mathrm { c } \$ are constants.

It appears as:
The general form of the equation of a straight line may be written as

$$
\begin{equation*}
a x+b y+c=0 \tag{1}
\end{equation*}
$$

where a, b, c are constants.

The Mathematics Environment

Typesetting Mathematics

(1) The variables x and y and the constants a, b and c are printed in italics. This is the default.
2. The different narts of the equation are spaced out properly although we did not include space anywhere. The spacing is adjusted so that the equation looks nice.
a The eqluation is numbered on the right hand margin
(a) The space between a, b and c on the last line is less than seen here. This happens when a, b and c are all put between a pair of $\$$ signs - that is, they are typeset in math mode. Thus $\$ \mathrm{a}, \mathrm{b}$ and $\mathrm{c} \$$ would appear as a, bandc.

To get unnumbered equations, use the environment equation*

The Mathematics Environment

Typesetting Mathematics

(1) The variables x and y and the constants a, b and c are printed in italics. This is the default.

The different parts of the equation are spaced out properly adjusted so that the equation looks nice.

- The equation is numbered on the right hand marginThis happens when a, b and c are all put between a pair of $\$$ signs - that is, they are typeset in math mode. Thus $\$ a, b$ and $c \$$ would appear as a. bandc.

To get unnumbered equations, use the environment equation*

The Mathematics Environment

Typesetting Mathematics

(1) The variables x and y and the constants a, b and c are printed in italics. This is the default.
© The different parts of the equation are spaced out properly although we did not include space anywhere. The spacing is adjusted so that the equation looks nice.

- The equation is numbered on the right hand margin

> This happens when a, b and c are all put between a pair of $\$$ signs - that is, they are typeset in math mode. Thus $\$ a, b$ and $c \$$ would appear as a, bandc.

To get unnumbered equations, use the environment equation*

The Mathematics Environment

Typesetting Mathematics

(1) The variables x and y and the constants a, b and c are printed in italics. This is the default.
(2) The different parts of the equation are spaced out properly although we did not include space anywhere. The spacing is adjusted so that the equation looks nice.
(3) The equation is numbered on the right hand margin
\qquad - that is, they are typeset in math mode. Thus $\$ \mathrm{a}, \mathrm{b}$ and $\mathrm{c} \$$ would appear as a, bandc.

To get unnumbered equations, use the environment equation*

The Mathematics Environment

Typesetting Mathematics

(1) The variables x and y and the constants a, b and c are printed in italics. This is the default.
(2) The different parts of the equation are spaced out properly although we did not include space anywhere. The spacing is adjusted so that the equation looks nice.
(3) The equation is numbered on the right hand margin
(9) The space between a, b and c on the last line is less than seen here. This happens when a, b and c are all put between a pair of $\$$ signs - that is, they are typeset in math mode. Thus $\$ \mathrm{a}, \mathrm{b}$ and $\mathrm{c} \$$ would appear as a, bandc.

To get unnumbered equations, use the environment equation*

The Mathematics Environment

Typesetting Mathematics

(1) The variables x and y and the constants a, b and c are printed in italics. This is the default.
(2) The different parts of the equation are spaced out properly although we did not include space anywhere. The spacing is adjusted so that the equation looks nice.
(3) The equation is numbered on the right hand margin
(9) The space between a, b and c on the last line is less than seen here. This happens when a, b and c are all put between a pair of $\$$ signs - that is, they are typeset in math mode. Thus $\$ \mathrm{a}, \mathrm{b}$ and $\mathrm{c} \$$ would appear as a, bandc.

To get unnumbered equations, use the environment equation*

The Mathematics Environment

Typesetting Mathematics

(1) The variables x and y and the constants a, b and c are printed in italics. This is the default.
(2) The different parts of the equation are spaced out properly although we did not include space anywhere. The spacing is adjusted so that the equation looks nice.
(3) The equation is numbered on the right hand margin
(1) The space between a, b and c on the last line is less than seen here. This happens when a, b and c are all put between a pair of $\$$ signs - that is, they are typeset in math mode. Thus $\$ \mathrm{a}, \mathrm{b}$ and $\mathrm{c} \$$ would appear as a, bandc.

To get unnumbered equations, use the environment equation*

Superscript and subscript

Superscript

Superscript (or exponent) can be typeset using the 'cap' symbol. Thus:

$$
x^{n}+y^{n}=z^{n}
$$

can be typeset using the statement

$$
\Phi_{\mathrm{x}^{n} n}+\mathrm{Y}^{n} n=z^{n} n \$
$$

Superscript and subscript

Superscript

Superscript (or exponent) can be typeset using the 'cap' symbol. Thus:

$$
x^{n}+y^{n}=z^{n}
$$

can be typeset using the statement

$$
\Phi_{\mathrm{x}^{n} n}+\mathrm{Y}^{n} n=z^{n} n \$
$$

Superscript and subscript

Superscript

Superscript (or exponent) can be typeset using the 'cap’ symbol.

can be typeset using the statement

$$
\$ x^{\wedge} n+y^{n} n=z^{\wedge} n \$
$$

Superscript and subscript

Superscript

Superscript (or exponent) can be typeset using the 'cap' symbol. Thus:

$$
x^{n}+y^{n}=z^{n}
$$

can be typeset using the statement

$$
\$ x^{\wedge} n+y^{\wedge} n=z^{\wedge} n \$
$$

Superscript and subscript

Superscript

Superscript (or exponent) can be typeset using the 'cap' symbol. Thus:

$$
x^{n}+y^{n}=z^{n}
$$

can be typeset using the statement

$$
\$ x^{\wedge} n+y^{\wedge} n=z^{\wedge} n \$
$$

Superscript and subscript

Subscript

Subscripts can be typeset using the underscore character. Thus:

$$
x_{n}=x_{(n-1)}+x_{(n-2)}
$$

can be typeset using the command

$$
\$ x-n=x-\{(n-2)\}+x-\{(n-1)\} \$
$$

Superscript and subscript

Subscript

Subscripts can be typeset using the underscore character. Thus:

$$
x_{n}=x_{(n-1)}+x_{(n-2)}
$$

can be typeset using the command

$$
\$ x-n=x-\{(n-2)\}+x-\{(n-1)\} \$
$$

Superscript and subscript

Subscript

Subscripts can be typeset using the underscore character.

$$
x_{n}=x_{(n-1)}+x_{(n-2)}
$$

can be typeset using the command

$$
\$ \mathrm{x} _\mathrm{n}=\mathrm{x}-\{(\mathrm{n}-2)\}+\mathrm{x}-\{(\mathrm{n}-1)\} \$
$$

Superscript and subscript

Subscript

Subscripts can be typeset using the underscore character. Thus:

$$
x_{n}=x_{(n-1)}+x_{(n-2)}
$$

can be typeset using the command

$$
\$ \mathrm{x} _\mathrm{n}=\mathrm{x}-\{(\mathrm{n}-2)\}+\mathrm{x} _\{(\mathrm{n}-1)\} \$
$$

Superscript and subscript

Superscript and subscript

Superscript and subscript can be used together:

can be typeset using the statement

Superscript and subscript

Superscript and subscript

Superscript and subscript can be used together:

can be typeset using the statement

Superscript and subscript

Superscript and subscript

Superscript and subscript can be used together:

$$
x_{1}^{2}+x_{2}^{2}=x_{3}^{2}
$$

can be typeset using the statement

Superscript and subscript

Superscript and subscript

Superscript and subscript can be used together:

$$
x_{1}^{2}+x_{2}^{2}=x_{3}^{2}
$$

can be typeset using the statement

Superscript and subscript

Superscript and subscript

Superscript and subscript can be used together:

$$
x_{1}^{2}+x_{2}^{2}=x_{3}^{2}
$$

can be typeset using the statement

$$
\$ \mathrm{x} 1^{\wedge} 2+\mathrm{x} 2^{\wedge} 2=\mathrm{x} 3^{\wedge} 2 \$
$$

Superscript and subscript

Multiple levels

Superscript (and subscript) can be used in two levels.

can be typeset using the command

$$
\$ x^{\wedge}\left\{m^{\wedge} 2\right\} \backslash \text { times } x^{\wedge}\left\{n^{\wedge} 2\right\}=x^{\wedge}\left\{m^{\wedge} 2+n^{\wedge} 2\right\} \$
$$

Superscript and subscript

Multiple levels

Superscript (and subscript) can be used in two levels.

can be typeset using the command

$$
\$ x^{\wedge}\left\{m^{\wedge} 2\right\} \backslash \text { times } x^{\wedge}\left\{n^{\wedge} 2\right\}=x^{\wedge}\left\{m^{\wedge} 2+n^{\wedge} 2\right\} \$
$$

Superscript and subscript

Multiple levels

Superscript (and subscript) can be used in two levels. For instance:

$$
x^{m^{2}} \times x^{n^{2}}=x^{m^{2}+n^{2}}
$$

can be typeset using the command

$$
\$ x^{\wedge}\left\{m^{\wedge} 2\right\} \backslash \text { times } x^{\wedge}\left\{n^{\wedge} 2\right\}=x^{\wedge}\left\{m^{\wedge} 2+n^{\wedge} 2\right\} \$
$$

Superscript and subscript

Multiple levels

Superscript (and subscript) can be used in two levels. For instance:

$$
x^{m^{2}} \times x^{n^{2}}=x^{m^{2}+n^{2}}
$$

can be typeset using the command

Superscript and subscript

Multiple levels

Superscript (and subscript) can be used in two levels. For instance:

$$
x^{m^{2}} \times x^{n^{2}}=x^{m^{2}+n^{2}}
$$

can be typeset using the command

$$
\$ \mathrm{x}^{\wedge}\left\{\mathrm{m}^{\wedge} 2\right\} \backslash \text { times } \mathrm{x}^{\wedge}\left\{\mathrm{n}^{\wedge} 2\right\}=\mathrm{x}^{\wedge}\left\{\mathrm{m}^{\wedge} 2+\mathrm{n}^{\wedge} 2\right\} \$
$$

Operators

Basic operators

Notice the operator we already used for multiplication, namely, \times. This gives a better looking \times ('into') compared to what we normally use, namely, the alphabet x.
We have other operators like \backslash frac (for fractions such as $\frac{1}{2}$) and \backslash dfrac (for large size fractions like $\frac{1}{2^{n-1}}$)

Operators

Roots

Square roots can be typeset using the command \backslash sqrt:

$$
\$ i=\backslash \text { sqrt }\{-1\} \$
$$

It produces the output:

Operators

Roots

Square roots can be typeset using the command \backslash sqrt:

$$
\$ i=\backslash \text { sqrt }\{-1\} \$
$$

It produces the output:

Operators

Roots

Square roots can be typeset using the command \backslash sqrt:

$$
\$ \text { i }=\backslash \operatorname{sqrt}\{-1\} \$
$$

It produces the output:

$$
i=\sqrt{-1}
$$

Operators

Roots

Other roots can also be typeset using the same command. For instance,

is generated using: \$ $\mathrm{y}=\backslash \operatorname{sqrt}[\mathrm{n}]\left\{\mathrm{x}^{\wedge} \mathrm{m}\right\}$ \$

Operators

Roots

Other roots can also be typeset using the same command. For instance,

is generated using: \$ $\mathrm{y}=\backslash \operatorname{sqrt}[\mathrm{n}]\left\{\mathrm{x}^{\wedge} \mathrm{m}\right\}$ \$

Operators

Roots

Other roots can also be typeset using the same command. For instance,

$$
y=\sqrt[n]{x^{m}}
$$

is generated using:

$$
\$ \mathrm{y}=\backslash \operatorname{sqrt}[\mathrm{n}]\left\{\mathrm{x}^{\wedge} \mathrm{m}\right\} \$
$$

Operators

Roots

Note that the vinculum, as mathematicians used to call the horizontal line in the square root symbol, extends to include the entire text inside:

The square root symbol can be nested:

```
The sequence
2\sqrt{}{2},}\quad\mp@subsup{2}{}{2}\sqrt{}{2-\sqrt{}{2}
23}\sqrt{}{2-\sqrt{}{2+\sqrt{}{2}}
```

converges to π.

Operators

Roots

Note that the vinculum, as mathematicians used to call the horizontal line in the square root symbol, extends to include the entire text inside:

The square root symbol can be nested:

```
The sequence
2\sqrt{}{2},}\quad\mp@subsup{2}{}{2}\sqrt{}{2-\sqrt{}{2}
23}\sqrt{}{2-\sqrt{}{2+\sqrt{}{2}}
```

converges to π.

Operators

Roots

Note that the vinculum, as mathematicians used to call the horizontal line in the square root symbol, extends to include the entire text inside:

$$
\text { Sum }=\sqrt{\frac{n(n+1)}{2}}
$$

The square root symbol can be nested:

```
The sequence
```


converges to π.

Operators

Roots

Note that the vinculum, as mathematicians used to call the horizontal line in the square root symbol, extends to include the entire text inside:

$$
\text { Sum }=\sqrt{\frac{n(n+1)}{2}}
$$

The square root symbol can be nested:
The sequence

$$
2 \sqrt{2}, \quad 2^{2} \sqrt{2-\sqrt{2}}, \quad 2^{3} \sqrt{2-\sqrt{2+\sqrt{2}}}, \ldots
$$

converges to π.

Operators

Sum

Sum is often used in mathematics. It is written, simply, as:
\square
This appears as:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

This is the inline form. In the display form, it appears as:

Operators

Sum

Sum is often used in mathematics. It is written, simply, as:
\square
This appears as:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

This is the inline form. In the display form, it appears as:

Operators

Sum

Sum is often used in mathematics. It is written, simply, as:

$$
\$ \backslash \text { sum_ }\{\mathrm{n}=1\}^{\wedge} \backslash \text { infty } \backslash \text { frac }\{1\}\left\{\mathrm{n}^{\wedge} 2\right\}=\backslash \text { frac }\{\backslash \mathrm{pi} \wedge 2\}\{6\} \$
$$

This appears as:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

This is the inline form. In the display form, it appears as:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Operators

Integral

Here is an equation with limits and definite integration:

Thus, $\lim _{x \rightarrow \infty} \int_{0}^{x} \frac{\sin x}{x} d x=\frac{\pi}{2}$ and so, by definition,

$$
\int_{0}^{\infty} \frac{\sin \mathrm{x}}{\mathrm{x}} \mathrm{dx}=\frac{\pi}{2}
$$

Operators

Integral

...and here is its source:
 $\mathrm{x}\}\{\mathrm{x}\} \mathrm{dx}=\backslash \mathrm{frac}\{\backslash \mathrm{pi}\}\{2\}\} \$$ and so, by definition,

$$
\int_{0}^{\infty} \frac{\sin \mathrm{x}}{\mathrm{x}} \mathrm{dx}=\frac{\pi}{2}
$$

Operators

Integral

...and here is its source:
 $\mathrm{x}\}\{\mathrm{x}\} \mathrm{dx}=\backslash \mathrm{frac}\{\backslash \mathrm{pi}\}\{2\}\} \$$ and so, by definition,

$$
\int_{0}^{\infty} \frac{\sin \mathrm{x}}{\mathrm{x}} \mathrm{dx}=\frac{\pi}{2}
$$

Operators

Integral

... and here is its source:
 $\mathrm{x}\}\{\mathrm{x}\} \mathrm{dx}=\backslash \mathrm{frac}\{\backslash \mathrm{pi}\}\{2\}\} \$$ and so, by definition,

$$
\int_{0}^{\infty} \frac{\sin \mathrm{x}}{\mathrm{x}} \mathrm{dx}=\frac{\pi}{2}
$$

You can, of course, write the equation yourself now.

Operators

Product

You may want to write something like:

$$
p_{k}(x)=\prod_{\substack{i=1 \\ i \neq k}}^{n}\left(\frac{x-t_{i}}{t_{k}-t_{i}}\right)
$$

You can do it like this:

Operators

Product

You may want to write something like:

$$
p_{k}(x)=\prod_{\substack{i=1 \\ i \neq k}}^{n}\left(\frac{x-t_{i}}{t_{k}-t_{i}}\right)
$$

You can do it like this:

Operators

Product

You may want to write something like:

$$
p_{k}(x)=\prod_{\substack{i=1 \\ i \neq k}}^{n}\left(\frac{x-t_{i}}{t_{k}-t_{i}}\right)
$$

You can do it like this:

```
\begin{equation*}
p_k(x) = \prod_{\substack{i=1\\i\ne k}}^n \left(\frac{ x-t_ i}
{t_ k-t_ i}\right)
\end{equation*}
```


More

More

We have now learnt the basics of writing a $\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and determinants
- creating cross references
- inserting hyperlinks
- building table of contents, table of figures, etc.
- managing references and bibliography
- ... and so on

More

More

We have now learnt the basics of writing a $\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and determinants
- creating cross references
- inserting hymerlinks
- building table of contents, table of figures, etc.
- managing references and bibliography
- ... and so on

More

More

We have now learnt the basics of writing a $\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and deterrninants
- creating cross references
- inserting hyperlinks
- building table of contents, table of figures, etc.
- managing references and bibliography
- ... and so on

More

More

We have now learnt the basics of writing a $\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and determinants
- creating cross references
- inserting hyperlinks
- building table of contents, table of figures, etc.
- managing references and bihlingranhy
- ... and so on

More

More

We have now learnt the basics of writing a ETEX document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and determinants
- creating cross references
- inserting hymerlinks
- building table of contents, table of figures, etc.
- managing references and bibliography
- ... and so on

More

More

We have now learnt the basics of writing a ETEX document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and determinants
- creating cross references
- inserting hyperlinks
- building table of contents, table of figures, etc.
- managing references and bibliography
- ... and so on

More

More

We have now learnt the basics of writing a ETEX document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and determinants
- creating cross references
- inserting hyperlinks
- building table of contents, table of figures, etc.
- managing references and bibliography

More

More

We have now learnt the basics of writing a ETEX document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and determinants
- creating cross references
- inserting hyperlinks
- building table of contents, table of figures, etc.
- managing references and bibliography

More

More

We have now learnt the basics of writing a ETEX document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and determinants
- creating cross references
- inserting hyperlinks
- building table of contents, table of figures, etc.
- managing references and bibliography

More

More

We have now learnt the basics of writing a ETEX document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and determinants
- creating cross references
- inserting hyperlinks
- building table of contents, table of figures, etc.
- managing references and bibliography

More

More

We have now learnt the basics of writing a $\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ document. But we have not touched upon a number of aspects such as:

- using fonts
- creating text boxes
- setting paragraph properties
- creating complex tables
- writing matrices and determinants
- creating cross references
- inserting hyperlinks
- building table of contents, table of figures, etc.
- managing references and bibliography
- ... and so on

More

Books:

TUG India: LATEX Tutorials: A Primer, Indian TEX User Group, Trivandrum, India, 2003.

Peter Flynn: Formatting Information. Δ heginners introduction to typesetting with LATEX, Silmaril Consultants, 2005.
Leslie Lamport: ATEX A Document Preparation System, Addison-Wesley Professional, 2 edition, 1994.

Donald E. Knuth: The TEX Book, Addison-Wesley Professional, 1984

More

Books:

TUG India: $A T_{E} X$ Tutorials: A Primer, Indian $\mathrm{T}_{\mathrm{E}} X$ User Group, Trivandrum, India, 2003.

> Peter Flynn: Formatting Information: A beginners introduction to typesetting with LATEX, Silmaril Consultants, 2005.

Leslie Lam วort: ATEX A Document Preparation Svstem, Addison-Wesley Professional, 2 edition, 1994.

Donald E. Knuth: The TEX Book, Addison-Wesley Professional, 1984

More

Books:

TUG India: $A T_{E} X$ Tutorials: A Primer, Indian $T_{\mathrm{E}} X$ User Group, Trivandrum, India, 2003.
Peter Flynn: Formatting Information: A beginners introduction to typesetting with $A T_{E} X$, Silmaril Consultants, 2005.
Leslie Lamport: $A T_{E} X$ A Document Preparation System, Addison-Wesley Professional, 2 edition, 1994.
Donald E. Knuth: The TEX Book, Addison-Wesley Professional, 1984

More

Books:

TUG India: $A T_{E} X$ Tutorials: A Primer, Indian $T_{E} X$ User Group, Trivandrum, India, 2003.
Peter Flynn: Formatting Information: A beginners introduction to typesetting with $A T_{E} X$, Silmaril Consultants, 2005.
Leslie Lamport: $A T_{E} X$ A Document Preparation System, Addison-Wesley Professional, 2 edition, 1994.
Donald E. Knuth: The TEX Book, Addison-Wesley Professional, 1984

More

Books:

TUG India: $A T_{E} X$ Tutorials: A Primer, Indian $T_{E} X$ User Group, Trivandrum, India, 2003.
Peter Flynn: Formatting Information: A beginners introduction to typesetting with ${ }^{A T} T_{E} X$, Silmaril Consultants, 2005.
Leslie Lamport: $A T_{E} X$ A Document Preparation System, Addison-Wesley Professional, 2 edition, 1994.
Donald E. Knuth: The $T_{E} X$ Book, Addison-Wesley Professional, 1984

