

Special Symbols in.

Page 1 of 35

Scilab

Manjusha Joshi
Bhaskaracharya Pratishthana, Pune manjusha.joshi@gmail.com

December 21, 2009

1. Introduction

- Scilab is an Open Source software.
- It can work on windows as well as linux as well as Mac.
- scilab understands many mathematical data types like vector, matrix, polynomial etc.
- scilab has inbuilt functions.
- It also allow us to do programming, in which we can use inbuilt commands e.g. rank, inv etc.
- scilab is case sensitive. So V and v are different in scilab.

1. scilab has an editor called scipad.
2. scilab has graphics window.

3. scilab provides good help.
4. scilab has demos.

In scilab, vector and matrix are basic data types. A vector may also be considered as a matrix for computations.

$$
-->V=[2,-4,5]
$$

$$
-->V
$$

$$
44
$$

$$
2 .-4 . \quad 5 .
$$

$$
\begin{gathered}
-->V^{\prime} \\
\text { ans }=
\end{gathered}
$$

$$
2 .
$$

$$
-4
$$

$$
5 \text {. }
$$

Define two vectors U and V and try $U+V$. $U * V$
$U * V^{\prime}$ What are your observations?
Try size(U).

Page 5 of 35

Go Back

Full Screen

```
```

Products of vectors:

```
```

Products of vectors:
Dot product (a scalar) and component-wise product (a vec-
tor):
tor):

$-->u$			
u	$=$		
	1.	2.	3.
v	$=$		
	2.	3.	4.

$-->u * v$
$-->u * v$
!--error 10
!--error 10
inconsistent multiplication
inconsistent multiplication
$-->u . * V$
$-->u . * V$
ans =
ans =
2.
2.
6.
6.
12.

```
```

 12.
    ```
```

Rows and Columns
Home Page
Title Page

Page 6 of 35

Introduction
Special Symbols in . .
$-->u * v^{\prime}$
$\operatorname{ans}=$
20.
$-->u^{\prime} \star v$
ans =
$\begin{array}{lll}2 . & 3 . & 4 . \\ 4 . & 6 . & 8 . \\ 6 . & 9 . & 12 .\end{array}$

Rows and Columns

Home Page

Title Page

44

Page 7 of 35

Other interesting data type in scilab is Matrix.
Here is an example of writing a matrix in scilab.

$$
\begin{aligned}
& B=[1,2 ; 3,4] \\
& B=
\end{aligned}
$$

| 1. | 2. |
| :--- | :--- |
| 3. | 4. |

Now try to write a matrix A such that $A=\left[\begin{array}{ccc}1 & -3 & 2.4 \\ .5 & 0 & 3\end{array}\right]$

Try the following matrix operations for matrices of appropriate size :

Home Page

- $\mathrm{A}+\mathrm{B}$
- $3^{*} \mathrm{~A}$
- A*B
- $B^{*} \mathrm{~A}$
- A^{20}
- A/B $\frac{A}{B}$
- $\mathrm{A} \backslash \mathrm{B}$ Read it as A divides $B \frac{B}{A}$
- A. ^ 2
- A. /B
- A. $\backslash \mathrm{B}$

Using various commands for matrix operations and in built functions, it becomes easy to explain concepts in linear algebra at the college level.
For matrices there are in built commands to get elements, like

- $\mathrm{A}(2,1)$ (Gives the element in the second row and first column.)
- A(4) (Gives 4th element of the matrix, considering the matrix as a column-wise array)
- $A(:, 1)$ (All elements of the 1 st column.)
- $\mathrm{A}(2,:$) (All elements of the 2 nd row.)
- size(A) (The number of rows and columns.)
- length(A) (The number of elements.)

Home Page

Title Page

Page 10 of 35

Go Back

Full Screen

- $\operatorname{sum}(\mathrm{A})$ (The sum of all elements.)
- sum(A, 'r') Row wise addition of elements
- $\operatorname{prod}(\mathrm{A})$
- trace(A)
- $\operatorname{det}(\mathrm{A})$
- $\operatorname{inv}(\mathrm{A})$
- $\operatorname{spec}(\mathrm{A})$

Home Page

Title Page

- $\max (\mathrm{A})$
- $\min (\mathrm{A})$

2. Special Symbols in scilab

$$
\begin{gathered}
-->\% \mathrm{pi} \\
\% \mathrm{pi}
\end{gathered}
$$

$$
3.1415927
$$

$$
-->\div i
$$

$$
\% i=
$$

i

$$
-->\div e
$$

$$
\% \mathrm{o}=
$$

$$
\text { Page } 12 \text { of } 35
$$

$$
2.7182818
$$

$$
-->\% i n f
$$

\%inf =

Inf
-->\%eps

-->format (5)

Home Page

$$
-->\% e
$$

$$
\% e=
$$

2.72
-->format(20)
$-->\% e$
$\% e=$
2.71828182845904509

Page 13 of 35

Go Back

Full Screen

$$
\begin{gathered}
-->\% p i \\
\% p i=
\end{gathered}
$$

$$
3.142 \mathrm{D}+00
$$

-->format ('e', 20)
-->\%pi

$$
\% p i=
$$

$$
3.1415926535898 D+00
$$

-->format('v', 10)
$-->\% p i$
\%pi =

```
    Title Page
```


Page 14 of 35

Go Back

$$
3.1415927
$$

Trignometric functions

$$
\begin{gathered}
-->\cos (0) \\
\operatorname{ans}=
\end{gathered}
$$

$$
1 .
$$

-->sin(\%pi/2)

$$
\operatorname{ans}=
$$

1.

You can find $\cos ([\% p i: .1: \% p i / 4])$.

Other types of matrices:

- eye $(3,3)$
-->eye $(3,3)$
$\operatorname{ans}=$
Home Page

Title Page

| 1. | 0. | 0. |
| :--- | :--- | :--- |
| 0. | 1. | 0. |
| 0. | 0. | 1. |

- zeros(3,2)
- ones $(3,2)$

Page 16 of 35

- clean(inv(A))

Clean command rounds the number.

- - ans $\stackrel{\text { int }}{=}(10$ *rand $(3,3))$

```
-->diag(eye(3,3))
    ans =
        1.
        1.
        1.
    -->A=int(10*rand (3,3))
    A =
\begin{tabular}{lll}
2. & 3. & 8. \\
7. & 6. & 6. \\
0. & 6. & 8.
\end{tabular}
```

Title Page

44

Page 17 of 35

Title Page

$\underset{\operatorname{ans}}{-->\operatorname{diag}(A)}$
2.
6.
8.

You can define matrix with the diagonal entries.
Title Page

Page 19 of 35
--->diag ([2,-3,4,5],-2)
\$ will give the last entry in the matrix. The entry can be row, column or the element of the matrix.
$-->A(\$)$
$-->A(\$, 1)$
$-->A(\$,:)$

Title Page

Page 20 of 35

Go Back

To find max element in the matrix max (A)
To find i, j th position of the max element as well as the value

$$
-->[a, b]=\max (A)
$$

To find max from each column

$$
-->\max \left(A,{ }^{\prime} C^{\prime}\right)
$$

To find max of each row
$-->\max (A, ' r \prime)$
Similarly one can use min (A) command to find out min
Page 21 of 35

Go Back
$->A=\underset{A}{=}(10 * \operatorname{rand}(3,3))$

| 2. | 3. | 8. |
| :--- | :--- | :--- |
| 7. | 6. | 6. |
| 0. | 6. | 8. |

--> Index=find $(A<5)$
Index =

1. 3. 4 .
-->A(Index)

Go Back

Full Screen
2.
0 .

```
For symbolic computation
-->x=poly(0,'x')
    x =
    x
            2
        x 3 + x
-->det(A)
    ans=
            2 3
        3x + x - 2x
```

```
-->A=[x,2*x; x^2,x+3]
```

-->A=[x,2*x; x^2,x+3]
A =
A =
x 2x
x 2x
x 2x

```
    x 2x
```

```
\[
23
\]
```

 Page 23 of 35
 Go Back
 It is also possible to find inverse of symbolic matrix. -->inv(A) ans =

Home Page

Page 24 of 35

Go Back

$$
\begin{array}{r}
\underset{\operatorname{ans}}{-->r o o t s}\left(x^{\wedge} 2-3 \star x+4\right) \\
1.5+1.3228757 i \\
1.5-1.3228757 i
\end{array}
$$

Complex roots apears in pairs of conjugates in case of 'real' coefficients.

Page 25 of 35

Go Back

Another way to define polynomial

$$
\left.\begin{array}{l}
-->V=\left[\begin{array}{lll}
2 & -4 & 5
\end{array}\right] \\
\mathrm{ans}= \\
2
\end{array}\right] \begin{aligned}
& \text {-4 5 }
\end{aligned}
$$

$$
\begin{aligned}
& -->p o l y\left(V, ' x^{\prime}, ' \operatorname{coeff}\right) \\
& \text { ans }=
\end{aligned}
$$

$$
2-4 x+5 x^{2}
$$

$$
-->p o l y\left([1,-2,3],^{\prime} y^{\prime}, ' \operatorname{coeff}{ }^{\prime}\right)
$$

$$
\text { ans }=
$$

Page 26 of 35

Go Back

Full Screen

$$
1-2 y+3 y^{2}
$$

2.1. Quiz

1. To get help in scilab what you have to enter?
2. To see the demo of plot command what should you enter?
3. How to get transpose of the vector?
4. What is the difference between $u * v$ and $u . * v$

Diary command is useful to record your work.
---> diary filename
Home Page
$--->2+2$

4
---> diary off
your file will record between diary filename command and diary off.
The file will be stored in the present working directory.

Page 28 of 35

Go Back

Full Screen

3. Rows and Columns

Consider matrix A

Title Page

Page 29 of 35

Go Back

$$
-->A(1,:)
$$

$$
\operatorname{ans}=
$$

$$
2 . \quad 3 . \quad 4
$$

To obtain a submatrix or minor from a Matrix

$$
--->A(1: 2,3: 4)
$$

Page 30 of 35
This will produce first 2 rows and column no 3 and 4.

To change $R_{1} \rightarrow 2 R_{1}$
$-->A(1,:)=2 \star A(1,:)$
A $=$

To change $C_{1} \rightarrow 5 C_{1}$

Page 31 of 35

Go Back

To perform operation as $R_{1} \rightarrow R_{1}-R_{2}$

$$
\begin{aligned}
& -->A(1,:)=A(1,:)-A(2,:) \\
& A=
\end{aligned}
$$

| 0. | 0. | 0. |
| :--- | :--- | :--- |
| 20. | 6. | 8. |
| 30. | 9. | 12. |

To perform operation as $R_{2} \rightarrow R_{2}-\frac{2}{3} R_{3}$
$-->A(2,:)=A(2,:)-(2 / 3) * A(3,:)$
A =

| 0. | 0. | 0. |
| :--- | :--- | :--- |
| 0. | 0. | 0. |
| 30. | 9. | 12. |

Logical comparisons

Page 33 of 35

Go Back

Full Screen

Use of scilab by various ways:

- Solve Linear System of Equations
- Find roots of higher degree polynomials
- Find eigen values
- Evaluate matrix and polynomials with complex numbers
- Draw 2D and 3D figures

Thanks!

Page 35 of 35

Go Back

Full Screen

Close

