
Use of Scilab to demonstrate concepts in linear
algebra and polynomials

Dr. Madhu N. Belur

Control & Computing
Department of Electrical Engineering

Indian Institute of Technology Bombay
Email: belur@ee.iitb.ac.in



Outline

1 Matrices

2 Polynomials

3 Coprime polynomials

4 Fourier transform, polynomials, matrices



Introduction

Scilab is free.

Matrix/loops syntax is same as for Matlab.

Scilab provides all basic and many advanced tools.

This talk focus: linear algebra and polynomials.



Defining a matrix

A=[1 3 4 6]

B=[1 3 4 6;5 6 7 8]

size(A), length(A), ones(A), zeros(B), zeros(3,5)



determinant/eigenvalues/trace

A=rand(3,3)

det(A), spec(A), trace(A)

sum(spec(A))

if sum(spec(A))==trace(A) then
disp(’yes, trace equals sum’)

else
disp(’no, trace is not sum ’)

end

prod(spec(A))-det(A)



(Block) diagonalize A?

Let A be a square matrix (n × n) with distinct eigenvalues
λ1, . . . λn. Eigenvectors (column vectors) v1 to vn are then
independent.

Av1 = λ1v1 Av2 = λ2v2 . . .Avn = λnvn

A
[
v1v2 . . . vn

]
=

[
v1v2 . . . vn

]


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


(Column scaling of vectors v1, etc is just post-multiplication.)

[spe, vect] = spec(A)

inv(vect)*A*vect

Inverse exists because of independence assumption on eigenvectors.
Use ‘bdiag’ command for block diagonalization (when non
diagonalizable).



Rank, SVD

rank(A) svd(A)

[u, s, v ] = svd(A)

check u’-inv(u) u*s*v-A



Example: Income tax

Income tax for a man earning Rs. NET (after exempted
deductions) is

0% for the first 1,50,000
10% for the part between 1,50,000 and 3,00,000
20% for the part between 3,00,000 and 5,00,000
30% for the part above 5,00,000

[u, s, v ] = svd(A)

check u’-inv(u) u*s*v-A



Defining polynomials

Polynomials play a very central role in control theory: transfer
functions are ratio of polynomials.

s=poly(0,’s’) s=poly(0,’s’,’roots’)

p=s^2+3*s+2 p=poly([2 3 1],’s’,’coeff’)

roots(p) horner(p,5)

a = [1 2 3] horner(p,a) horner(p,a’)

w=poly(0,’w’) horner(p,%i*w)



Differentiation

p=poly([1 2 3 4 -3],’s’,’coeff’)

cfp=coeff(p)

diffpcoff=cfp(2:length(cfp)).*[1:length(cfp)-1]

diffp=poly(diffpcoff,’s’,’coeff’)

degree(p) can be used instead of length(cfp)-1



More about horner

w=poly(0,’w’) horner(p,(1+w)/(1-w))

a=-rand(1,4); p=poly(a,’s’);

q=horner(p,(w-1)/(1+w)) // bilinear(Cayley
transform)

abs(roots(numer(q)))



Multiplication and convolution

Output of a (linear and time-invariant) dynamical system is the
convolution of the input signal with the ‘impulse response’.
Convolution: central role.
Polynomial multiplication is related to convolution of their
coefficients

a=[1 2 3]; b=[4 5 6]; convol(a,b)

pa=poly(a,’s’,’coeff’); pb=poly(b,’s’,’coeff’);
coeff(pa*pb)

To convolve u(·) by h(·) is a linear operation on u(·).
Write h(s) = h0 + h1s + h2s

2 + · · ·+ hns
n (similarly u(s))

convolution y := h ∗ u (convolution of h and u).
y(k) =

∑n+m
j=0 h(j)u(k − j) (u has degree m).



Matrix for convolution

[y0 y1 · · · yn+m] = [u0 u1 · · · um]Ch

where the matrix Ch with m + 1 rows and n + m + 1 columns is
defined as 

h0 h1 h2 · · · hn 0 · · · 0
0 h0 h1 · · · hn−1 hn · · · 0
...

. . .
. . . · · · . . .

. . . · · ·
...

0 0 0 . . . hn





Coprime polynomials

Numerator and denominator polynomials of a transfer function
being coprime is critical for controllability and observability of
dynamical systems: Kalman

polynomials a(s) and b(s) are called coprime if they have no
common root.

Equivalently, their gcd (greatest common divisor) is 1.

Problem: given a(s) and b(s), find polynomials p(s) and q(s) such
that ap + bq = 0.
Easy: take p := −b and q = a. Relation to coprimeness??



Coprimeness: equivalent statements

Consider polynomials a(s) (of degree m) and b(s) (of degree n).
Following statements are equivalent.

a and b are coprime.

there exist no polynomials p and q with degree(p) < n
degree(q) < m such that ap + bq = 0.

there exist polynomials u and v such that au + bv = 1 (their
gcd).

In fact, u and v having degrees at most n − 1 and m − 1
respectively can be found. Then they are unique.



Equivalent matrix formulations

ap + bq can be considered as having coefficients obtained from

[p0 p1 · · · pm−1 q0 q1 · · · qn−1]

[
Ca

Cb

]
Ca and Cb have m rows and n rows respectively, and both have
m + n columns each.
Hence, following are equivalent

a and b are coprime[
Ca

Cb

]
is nonsingular[

Ca

Cb

]
has [1 0 · · · 0] in its (left)-image

Above matrix: Sylvester resultant matrix, its determinant:
resultant of two polynomials



Check this in scilab

sylvester mat.sci function constructs required matrix

linsolve(sy’,[1 0 0 · · · 0]′) // for coprime and
non-coprime

[x , kern]=linsolve(sy’,[0 0 0 · · · 0]′)

Uncontrollable and unobservable modes are related to eigenvectors
corresponding to the eigenvalue which is the ‘common root’.



Command ‘find’ : extracts TRUE indices

Consider the following problem: polynomials a and b might have
roots ‘close by’.
(Very difficult to control/observe: very high energy or input levels
needed to control, or measurement very sensitive to noise. This is
due to ‘close to’ uncontrollable/unobservable).
Find which are close to each other.

Find roots of a and b. For each root of a, check if a root of b
is within specified tolerance ‘toler’.

Two for loops?

find allows extraction of indices satisfying a boolean expression



Coefficients and powers as vectors

Evaluation of a polynomial p(s) at a value s = a is a linear map on
the coefficients.
p(a) = [p0 p1 · · · pn][1 a a2 · · · an]′

Moreover, if n and m are the degrees of p and q respectively,

p(s)q(s) = [1 s s2 sn]


p0

p1
...

pn

 [q0 q1 · · · qm]


1
s
...

sm


(n + 1)× (m + 1) matrix.



Bezoutian matrix

Bezoutian of a pair of polynomials p(s) and q(s) is defined as the
symmetric matrix B such that (suppose n > m )

[1 x x2 xn−1]B


1
y
...

yn−1

 =
p(x)q(y)− p(y)q(x)

x − y

B is n × n matrix. B is nonsingular if and only if p and q are
coprime.
Size of B is roughly half the size of the Sylvester resultant matrix.
B is symmetric.
(Both can have polynomials (in γ) as their coefficients.)



Discrete Fourier Transform

For a periodic sequence: DFT (Discrete Fourier Transform) gives
the frequency content.
Linear transformation on the input sequence.
Take signal values of just one period: finite dimensional signal (due
to periodicity of N).

X (k) :=
N−1∑
n=0

x(n)e
−2πik

N
n for k = 0, . . . ,N − 1 (analysis equation)

e−2πikN is the Nth root of unity.
Inverse DFT for the synthesis equation. Normalization constants
vary in the literature.



Discrete Fourier Transform

What is the matrix defining relating the DFT X (k) of the signal

x(n)? Define ω := e
−2πik

N
n.


X (0)
X (1)

...
X (N − 1)

 =


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

1
...

...
. . .

...

1 ωN−1 ω2N−2 · · · ω(N−1)2




x(0)
x(1)

...
x(N − 1)


(Note: ωN = 1, etc.)
Check that the above N × N matrix has nonzero determinant.
(Change of basis.) Moreover, columns are orthogonal.
Orthonormal? (Normalization (by

√
N) not done yet.)



Discrete Fourier Transform and interpolation

Van der monde matrix: closely related to interpolation problems
Of course, inverse DFT is nothing but interpolation! Used in
computation of determinant of a polynomial matrix.
Construct p(s) := x0 + x1s + x2s

2 · · ·+ xN−1s
N−1

To obtain X (k), evaluate p at s = ωk .
X (k) = p(ωk) horner command
Given values of p(ωk) for various ωk (i.e., X (k)), find the
coefficients of the polynomial p(s): inverse DFT: interpolation of a
polynomial to ‘fit’ given values at specified (complex) numbers.



FFT

Since many powers of ω are repeated in that matrix (only N − 1
powers are different, many real/imaginary parts are repeated for
even N), redundancy can be drastically decreased.
Length of the signal is a power of 2: recursive algorithm possible.



FFT: recursive implementation

Separate p(s) (coefficients x0, . . . , xN−1) into its even and odd
powers (even and odd indices k). N is divisible by 2.

Compute DFT of podd and peven separately. (Do same
separation, if possible.)

Let Xodd and Xeven denote the individual DFT’s. (Same length.)

Define D := diag(1, ω, ω2, . . . , ω
N
2
−1)

Combine the two separate DFT’s using the formula

X (k) = Xeven + DXodd for k = 0, . . . , N
2 − 1

X (k) = Xeven − DXodd for k = N
2 , . . . ,N − 1



Conclusions

Matrices and polynomials provide rich source of problems

With good computational tools, the future lies in
computational techniques

Scilab provides handy tools

We saw: if elseif else end for horner poly coeff

Recursive use of function

find conv max min


	Outline
	Matrices
	Polynomials
	Coprime polynomials
	Fourier transform, polynomials, matrices

