!
i
e
i
f+"+“§h

Lk
e
o

i

ot
s
iy
i
A

Scilab

Prof. S. A. Katre
Dept. of Mathematics, University of Pune

sakatre @math.unipune.ernet.in
sakatre @ gmail.com
sakatre @bprim.org

December 25, 2009

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns
Graphics
Newton-Raphson Method
Book on Scilab

Home Page

Page 1 of 94
Full Screen
Close
Quit

Special Symbols in scilab

1. factorial

Scilab does exact computations to some extent. But KASH
is a better software for this purpose.

—-—>factorial (6)

720.

—-—>factorial (20)

2.433D+18

—-—>factorial (12)

4.790D+08

——>factorial (11)

39916800.

Introduction

Special Symbols in scilab

Scilab can factor small numbers up to 10-12 digits, but not User defined functions
larger numbers. KASH software can factor numbers more g:,i acatms
efﬁ Ciently. Newton-Raphson Method

Book on Scilab

——>factor (15)

ans _ Home Page
Title Page
44 (44
——>factor (1534561890)
ans = ;;:L:;J
2. 3. 5. 271. 188753. _ Pgegorss_|

——>factor (15345618903452679) | oz |

!__errOr 17 Full Screen

stack size exceeded!

Use stacksize function to increase 1it. Close
Memory used for variables: 34614
Intermediate memory needed: 123877436 oo |

Total memory available: 5000000

Special Symbols in scilab

at line 20 of function primes called by
line 25 of function factor called by
factor (15345618903452679)

——>stacksize ()

5000000. 34066.

——>stacksize (50000000)

——>stacksize ()

50000000. 34059.

Introduction

Special Symbols in scilab

User defined functions

Rows and Columns

——>factor (15345618903452679) Graphics

|l —error 17 Newton-Raphson Method

Book on Scilab

stack size exceeded!
Use stacksize function to increase 1it. Home Page
Memory used for variables: 34611
Intermediate memory needed: 123877436 Title Page
Total memory available: 50000000
at line 20 of function primes called by :——«——I——»—J
line 25 of function factor called by : RS

factor (15345618903452679)

Page 5 of 94
——>stacksize (500000000)

!——error 1504 Go Back
stacksize:

Out of bounds value.Not in[180000,268435454]. _ Fursaeen |

Close
Quit

——>stacksize (260000000)

!'-—error 999
stacksize: Cannot allocate more memory.
Try stacksize ('max’).

——>stacksize ("max’)

—-—>stacksize ()

50000000. 34059.

——>factor (15345618903452)

457813. 8379851.

User defined functions

The ‘polfact’ function factorises the given polynomial with
real coefficients into irreducible polynomials of degree 1
and 2 over reals. Note that since complex (nonreal) roots, if
any, of a polynomial with real coefficients occur in cojugate
pairs, combining 2 such roots we get a quadratic polyno-
mial with real coefficients and this polynomial is irreducible
over reals. Hence any nonconstant polynomial with real co-
efficients factorises as a product of linear and quadratic ir-
reducible polynomials. The ‘polfact’ command in Scilab
gives the leading coefficient at the beginning, then monic
linear and quadratic irreducible factors. ‘polfact’ function
does not factorise a polynomial with complex (nonreal) co-
efficients.

—-—>x=poly (0, ’'x")

Introduction

Special Symbols in scilab

User defined functions

Rows and Columns
Graphics
Newton-Raphson Method
Book on Scilab

Home Page
Title Page
44 42
| 4
Page 7 of 94
Full Screen
Close
Quit

——>polfactor (x°4-1)
!——error 4

Undefined variable: polfactor

User defined functions

The command was wrong.
——>polfact (x"4-1)

ans =

-1 + x

——>polfact (x"7-1)
ans =

column 1 to 4
2 2
1-1.246979%96x+x 1+0.4450419x+x

column 5
2

1 + 1.8019377x + X

Introduction

Special Symbols in scilab

——>roots(x"7-1)

ans = Rows and Columns
Graphics
Newton-Raphson Method
0.6234898 + 0.78183151 Book on Scilab
0.6234898 - 0.78183151
-~ 0.9009689 + 0.43388371 =
- 0.9009689 — 0.43388371 e Page
- 0.2225209 + 0.97492791
— 0.2225209 - 0.97492791 “« | »
1

See how the conjugate roots combine to give real quadratic

factors. Pagegoros |
——>polfact (3x"7+x-1) | GoBak |
|——error 276

Missing operator, comma, Or semicolon.

The error was that we had to write 3 % 2", % was missing. B

Quit

——>polfact (3»x"7+x-1)
ans =

Newton-Raphson Method

column 1 to 3

2
3 0.8749381+1.6575743x+x 0.8088448+0.2295

column 4 to 5
2
0.6591506-1.1725921x+x -0.7145812+x

Here 3 is the leading coefficient seen at the beginning.

——>polfact (x"2+%1)

!'-—error 10000
polfact: Input argument #1 must be real.
at line 19 of function polfact called by
polfact (x"2+%1)

4. n-th roots

0.7071068 + 0.70710681

——>(%1) " (1/3)
ans =
0.8660254 + 0.51

—=>(1) " (1/5)

Newton-Raphson Method

5. Newton-Raphson Method

f(x) and initial guess xy is given, find out ‘zero’ for f(x).

Newton-Raphson Method

f(xr)

Lk+1 = T — f’(xk)

Let f(x) = cos(x), and 2y = 10

——>deff (' [y]=f(x)’,"y=cos(x)');

——>deff (' [y]=fl(x)’","'y=—sin(x)’);

-—>g (10)
ans =

11.542351

—-—>g (ans)

10.933672

—-—>g (ans)

10.995653

Newton-Raphson Method

Newton-Raphson Method

—-—>g (ans)
ans =
10.995574

——>g (ans)
ans =
10.995574

We get a fixed point of the function g. The value of g ob-
tained is a root of the original function f.
(N-R confusion. Mai Kahan Hoon? Ami Kothay?)

6. Newton-Raphson: More zeros

——>x=[0:.2:10]

X = Newton-Raphson Method
column 1

0. 0.2 0.4 0.6

column 11 to 20
2.2 2.4 2.6 2.8

column 21 to 30
4.2 4.4 4.6 4.8

column 31 to 40
6.2 6.4 6.6 6.8

column 41 to 50
8.2 8.4 8.6 8.8

column 51

——>cos (x)

Newton-Raphson Method

column 1 to 5

1. 0.9800666 0.9210610 0.8253356 0.69670

column ©6 to 10

0.5403023 0.3623578 0.1699671 -0.0291995

column 11 to 15

-0.4161468 -0.5885011 -0.7373937 -0.856888

column 16 to 20

-0.9899925 -0.9982948 -0.9667982 -0.8967584

column 21 to 25

Newton-Raphson Method

-0.6536436 -0.4902608 -0.3073329 -0.1121525

column 26 to 30

0.28360622 0.4685167 0.6346929 0.7755659 O

column 31 to 35

0.9601703 0.9965421 0.9931849 0.9502326 O

column 36 to 40

0.7539023 0.6083513 0.4385473 0.2512598 O.

Introduction

Special Symbols in scilab

User defined functions
COlU‘mn 4 1 tO 4 5 Rows and Columns

Graphics

—0.1455000 -0.3391549 -0.5192887 -0.6787200 —nohenBabndoihSnai(

Book on Scilab

column 46 to 50

Home Page
—0.9111303 -0.9748436 —-0.9996930 —-0.9846879 —-0.934426:
column 51 « »
~0.8390715 IR
Page 18 of 94
We find from the above list of values of cos x from O to 10, Go Back
that cos changes sign 3 times in [0, 10]. We thus expect to
find 3 zeros of cos x, one between 1.4 and 1.6, one between Full Screen
4.6 and 4.8, and one between 7.8 and 8.
Close

Quit

We use the Newton-Raphson formula

Let f(x) = cos(x), and consider the values of x for which
f(x) is nearer to zero.

Thus let x, = [1.6,4.8,7.8]. The other way to get these

Introduction

Special Symbols in scilab
User defined functions
Rows and Columns
Graphics
Newton-Raphson Method
Book on Scilab

values of x is to count the number of the terms starting from Home Page
the first value i.e. 1. Here x is a vector. Since the 8th and the
9th values of cos x have opposite signs and the 9th value is | merme |
closer to 0, we take x(9) as the initial approximation (which
is 1.6). Similarly, x(25) = 4.8 and 2(40) = 7.8 and we can i
as well take oy = [(9), z(25), x(40)] T
——>deff (/ [yl=f(x)’,’y=cos(x)'); e 00151
——>deff (' [y]=fl(x)',’y=-sin(x)");
——>deff (' [yl=g(x)’,"[y]l= x-f(x)./f1(x)"); Go Back
——>x0=[1.6,4.8,7.8] (vector of approximations ISP 0 o t
x0 =
1.6 4.8 7.8 e

(Alternatively x0=[x(9),x(25),x(40)])

Quit

-->g (x0)
ans =

1.570788 4.7121641

—-—>g (ans)

1.5707963 4.712389

——>g (ans)

1.5707963 4.712389

7.8540341

7.8539816

7.8539816

(We have got the 3 zeros of cos x

between 0 and 10.)

-—>%pi/2

1.5707963

This checks that the zeros are 7 /2, 37w /2 and 57 /2 as ex-

pected.

——>x=poly (0, "x")
X —_

——>roots (x"3—-x+1)

0.6623590 + 0.56227951

0.6623590 - 0.56227951
- 1.324718

The polynomial has 1 real root and 2 nonreal roots which are

complex conjugates. Recall that complex roots of a polyno-
mial with real coefficients occur in conjugate pairs.

Let us find a complex root of f(x) = x° —x+ 1 by Newton
Raphson method. To get it we have to start with a complex
(nonreal) initial approximation, e.g. 1 + 7.

——>f (1+%1)

2. + 1

——>deff (' [y]l=f(x)’, ' y=x"3-x+1")
——>deff (' [y]=fl(x)’, "y=3xx"2-1")
——>deff (' [yl=g(x)’, y=x-f (x)/fl(x)"')

——>g (1+%1)

0.7837838 + 0.70270271

-—>g (ans)
ans =

0.6860940

—-—>g (ans)

0.6633325

——>g (ans)

0.6623599

—-—>g (ans)

0.6623590

—-—>g (ans)

0.6623590

.58135641

.56251791

.56227881

.56227951

.56227951

The bisection method is very slow as compared to Newton
Raphson method.

To find a root of f(z) we first find some CLOSE values of
a and b for which f(a) and f(b) have opposite signs.

Then find ¢ = (a + b) /2.

If f(a) and f(c) have same signs (so that f(b) and f(c)
have opposite signs, consider ¢ as better than a and replace
a by c (i.e. put a = c¢) and keep b as it is.

If f(b) and f(c) have same signs, replace b by ¢, i.e. put
b=c.

Then find ¢ = (a + b)/2 for the new a and b and proceed
till you get sufficiently close values of a and b. Then declare
¢ = (a + b)/2 as an (approximate) root of f(x).

We shall now find a real root of f(z) = z* — x + 1 by
bisection method.

Introduction

Special Symbols in scilab
User defined functions
Rows and Columns
Graphics
Newton-Raphson Method
Book on Scilab

Home Page
Title Page
44 44
| 4
Page 24 of 94
Full Screen
Close
Quit

——>x=poly (0,’'x")
X =

X

——>roots (x"3-x+1)

0.6623590 + 0.56227951
0.6623590 — 0.56227951
- 1.324718

——>deff (' [y]=f(x)’, y=x"3-x+1")

—-—>b=c
b =]

= 1.5
——>c=(a+b) /2
c =

- 1.25
-—>d=[a,b,c], £ (d)

- 1.5 - 1.25

- 0.875 0.296875

—-—>b=c,c=(atb)/2,d=[a,b,c], £(d)
b =

- 1.25
c =

- 1.125

- 1.25 - 1.125

0.296875 0.7011719
(We made a mistake in the choice of a,b.)

-——>a=-1,b=-1.5,c=-1.25
a =]

- 1.25
——>a=cC
a =

- 1.25

-—>c=(a+tb)/2,d=[a,b,c], f(d)
c =

- 1.375
d =

-1.25 -1.5 - 1.375

0.296875 - 0.875 - 0.2246094

-=>b=c
b —

- 1.375

——>c=(a+b) /2,d=[a,b,c], f(d)
c p—t
- 1.3125

- 1.25 - 1.375 - 1.3125

0.296875 - 0.2246094 0.0515137

——> a=c;

-—>c=(a+tb)/2,d=[a,b,c], £(d)
a =
- 1.34375
d =
- 1.3125 - 1.375 - 1.34375

0.0515137 - 0.2246094 - 0.0826111

~—>b=c
b —

- 1.34375

-->c=(atb) /2,d=[a,b,c], £(d)
C =
- 1.328125

- 1.3125 - 1.34375 - 1.328125

0.0515137 - 0.0826111 - 0.0145760
—-—>b=c
b =
- 1.328125

-->c=(atb) /2,d=[a,b,c], £(d)
c =
- 1.3203125
d =
- 1.3125 - 1.328125 - 1.3203125

0.0515137 - 0.0145760 0.0187106

——>a=cC
a =]

- 1.3203125
-->c=(atb) /2,d=[a,b,c], £(d)
c =
- 1.3242188
d =
- 1.3203125 - 1.328125 - 1.3242188

0.0187106 - 0.0145760 0.0021279

—-—>a=c
a =
- 1.3242188

-—>c=(a+b)/2,d=[a,b,c], f(d)
c =
- 1.3261719
d =
- 1.3242188 - 1.328125 - 1.3261719

0.0021279 - 0.0145760 - 0.0062088

~—>b=c
b —

- 1.3261719
-—>c=(a+tb)/2,d=[a,b,c], f(d)
e =
- 1.3251953

- 1.3242188 - 1.3261719 - 1.3251953

0.0021279 - 0.0062088 - 0.0020367

~-->b=c
b =
- 1.3251953

-->c=(atb) /2,d=[a,b,c], £(d)
c =
- 1.324707
d =
- 1.3242188 - 1.3251953 - 1.324707

0.0021279 - 0.0020367 0.0000466

——>a=cC
a =]

- 1.324707

——>C:(a+b) /Zrd:[albl C] 4 f (d)

c =
- 1.3249512
d =
- 1.324707 - 1.3251953 - 1.3249512
ans =
0.0000466 - 0.0020367 - 0.0009948

The answer by Newton Raphson method comes out to
be —1.324718 in a few steps only and f(—1.324718) is
—.0000002 . This example illustrates that Newton Raph-
son method which has quadratic convergence is far superior
to bisection method

Introduction

Special Symbols in scilab
User defined functions
Rows and Columns
Graphics
Newton-Raphson Method
Book on Scilab

Home Page
Title Page
44 42
< 4
Page 34 of 94
Full Screen
Close
Quit

8. Linear Algebra

Finding eigenvalues and eigenvectors

scilab-5.0.2

Consortium Scilab (DIGITEO)
Copyright (c) 1989-2008 (INRI:
Copyright (c) 1989-2007 (ENPC

Startup execution:
loading initial environment

—-—>A=10*xrand (3, 3)
A =

.1132487 3.3032709 8.4974524
.5604385 6.653811 6.8573102
.0022113 6.2839179 8.7821648

——>det (x*xeye (3, 3) -A)

2 3
- 216.73055 + 22.971179x — 17.549225x + x

——>v=roots (ans)
V =

0.3004267 + 3.56334621
0.3004267 — 3.56334621
16.948371

0.3004267 + 3.56334621

——>spec (A)

0.3004267 + 3.56334621
0.3004267 — 3.56334621
16.948371

——>rref (A-v (1) xeye (3, 3))

0.0401986 + 1.1130061
1.349739 - 0.56744971
0

——>w=[-ans(1l,3);-ans (2,3);1]
W =

- 0.0401986 - 1.1130061
- 1.349739 + 0.56744971
1.

——>(A-v (1l)xeye(3,3))*w

1.0D-14 «

- 1.92901251
0.2664535 - 0.08881781
- 0.04440891

——>clean (ans)

—-—>roots (det (xxeye (3, 3) -A))

0.3004267 + 3.56334621
0.3004267 — 3.56334621
16.948371

9. Lagrange’s Interpolation Formula

scilab-5.1.1

Consortium Scilab (DIGITEO)
Copyright (c) 1989-2009 (INRIA)
Copyright (c) 1989-2007 (ENPC)

Startup execution:
loading initial environment

-——>v=[2, 3]
V =

——>sum (V)
ans =

—-—>deff ('z=f(x,y,t)’, z=x+y+t’)
Warning : redefining function: £
Use funcprot (0) to avoid this message

-—>f(1,2,3)

——>f (v (1),v(2),v(3))

12.

-—>a=[2,4,6,-10]
a =

2 4. 6.

-->b=[5,10,18,-25]
b =

—-—>x=poly (0, ’x")

——>deff ("w=f(y,z,t,u,v)’, w=v* (x—2z) * (x—t) *x (x—u)/ ((y—2z) * (y-t) x (y-u))’)
Warning : redefining function: f . Use funcprot (0

-—>f(2,4,6,-10,5)
ans =

3
12.5 - 3.9583333x + 0.0520833x

-—>c=[f(a(l),a(2),a(3),a(4),b(1l)),f(a(2),a(l),a(3),a(4),b(2)),f(a(3),al

column 1

3
12.5 — 3.9583333x + 0.0520833x

column 2

2 3
- 21.428571 + 12.142857x - 0.3571429x - 0.1785714x

column 3

2 3
11.25 - 7.3125x + 0.5625x + 0.140625x

column 4

2 3
- 0.4464286 + 0.4092262x - 0.1116071x + 0.0093006x

—=>sum(c)
ans =

2 3
1.875 + 1.28125x + 0.09375x + 0.0234375x

This gives the required interpolating polynomial.

This presentation is prepared using

PDFScreen

package with IXTEX.

e Scilab is a free software and is similar to the commercial
software MatLab. It is prepared by a team of French
mathematicians/computer scientists (INRIA).

e Version scilab-5.1.1 is available in 2009.
e [t can work on windows as well as linux.

e Scilab understands many mathematical data types like
vector, matrix, polynomial etc.

e Scilab has inbuilt functions.

e [t also allow us to do programming, in which we can use
inbuilt commands e.g. rank, inv etc.

e Scilab is case sensitive. So V' and v are different in
scilab.

Introduction

Special Symbols in scilab
User defined functions
Rows and Columns
Graphics
Newton-Raphson Method
Book on Scilab

Home Page

Title Page

<4 44

Page 46 of 94

Go Back

Full Screen

Close

Quit

1. Scilab has an editor called Scipad.

2. Scilab has graphics window.

3. Scilab provides good help.

4. You can get help on a specific topic by a simple com-
mand such as ‘help Matrix .

5. Scilab has demos.

In Scilab, vector and matrix are basic data types. A vector
may also be considered as a matrix for computations.

-—>V=[2,-4,5]

——>V

Define two vectors U and V and try U + V.
UxV

U x V' What are your observations?

Try with other inbuilt functions of scilab for vectors such as
norm(V)
size(U) etc.

Products of vectors:
Dot product (a scalar) and component-wise product (a vec-
tor):

——>u
u

——>U*V
!-—error 10
inconsistent multiplication

——>U.*V

Other interesting data type in scilab is Matrix.
Here is an example of writing a matrix in scilab.

B=[1,2;3,4]

1 =3 24
S 0 3

Now try to write a matrix A such that A = [

Try the following matrix operations for matrices of appro-
priate size :

e A+B
o 3*A
e A*B
e B*A
e A-B
o A20

Using various commands for matrix operations and in built
functions, it becomes easy to explain concepts in linear al-
gebra at the college level.

For matrices there are in built commands to get elements,
like

e A(2,1) (Gives the element in the second row and first
column.)

e A(4) (Gives 4th element of the matrix, considering the
matrix as a column-wise array)

e A(:,1) (All elements of the 1st column.)

e A(2,:) (All elements of the 2nd row.)

® size(A) (The number of rows and columns.)
e length(A) (The number of elements.)

e sum(A) (The sum of all elements.)

e trace(A)

e det(A)

e inv(A)

® spec(A)

Introduction

Special Symbols in scilab
User defined functions
Rows and Columns
Graphics
Newton-Raphson Method
Book on Scilab

Home Page

Title Page

<4 44

Page 54 of 94

Go Back

Full Screen

Close

Quit

11. Special Symbols in scilab

3.1415927
——>%1

o 2 —
1 =

2.7182818
——>%1inf
$inf =

Inf

Trignometric functions

—-—>cos (0)

1.

——>sin (%pi/2)

Other types of matrices:

e cye(3,3)
-—>eye (3, 3)

1.
0.
0.

e zeros(3,2)
e ones(3,2)

e clean(inv(A))

e ——>int (10xrand (3, 3))
ans =

For symbolic computation
——>x=poly (0,7’ x")

< —

——>A=[x,2*x;x"2,x+3]

It is also possible to find inverse of symbolic matrix.
——>1nv (A)

——>roots (x"2-3%x+4)

+ 1.32287571

.5
5 - 1.32287571

1
1.

Another way to define polynomial

——>V= [2 -4 5]

ans =
2 -4 5

—-—>poly (V,’'x","coeft’)
ans =

2
2 — 4x + bx

—-—>poly ([1,-2,3],'y",’'coeff’)
ans =

11.1. Gauss-Jordan elimination

row-reduced echelon form

First form augmented matrix:
-—>A

100. !
250. !
300. !

Use function rref to get the row-reduced echelon form:

——>rref (A_auqg)

36.809816 !
96.01227 !
40.490798 !

This matrix gives the solution of X, Y, 7

11.2. Eigenvalues

To form the characteristic matrix, first define the polyno-
mial variable ‘lam’ i.e. A:

——>lam = poly(0,’"lam’)

Form the characteristic matrix as follows:

——>Ch_Mat = A-lamxeye (m,n)
Ch_Mat =

3 — lam

- 5 - lam

The characteristic polynomial is the determinant of the
characteristic matrix:

——>p = det (Ch_Mat)
p =

2 3
- 163 + 571lam - 3lam - lam

The eigenvalues are the roots of the characteristic polyno-
mial. These can be found using function ‘roots’:

——>lam = roots (p)
lam =

3.5878707 + 1.7736044i !
3.5878707 - 1.77360441 !
- 10.175741 I

Function ‘spec’ calculates eigenvalues in the fourth col-
umn.

11.3. Quiz

1. To get help in scilab what should you enter?

2. To see the demo of plot command what should you en-
ter?

3. How to get transpose of a vector?

4. What 1s the difference between uxv and u. *v

Problem Set

1.

Find factorial(6). Get it also for 10, 11, 12, 50 and see
the difference.

. Find factors of numbers upto 10-12 digits. Try factoring

numbers with more digits.

. Express the numbers 7, 7, € using Scilab.

. Find factors of a polynomial with real coefficients using

‘polfact’.

Note: First use “x = poly(0,’ x’)” to define the variable
x. Using pol fact command you will get factors which
are of degree 1 or 2 with real coefficients. Try factoring
a polynomial with complex coefficients.

. Find a real root of f(x) = x> — x + 1 using Newton-

Raphson Method. Also find all roots using ‘roots’ com-
mand.

. Find all roots of f(x) = 2cosx — 1 between 1 and 10

using Newton-Raphson method.

. Use bisection method to find a root of f(z) = e* — 2.

. Can you find a root of f(z) = e” using Scilab?

Introduction

Special Symbols in scilab
User defined functions
Rows and Columns
Graphics
Newton-Raphson Method
Book on Scilab

Home Page

Title Page
44 42
| 4

Page 68 of 94

Go Back

Full Screen

Close

Quit

12. User defined functions

Inline functipn:

——>deff (' [y]l=f(x)’,’y=3*x+sin(x)"’)

——>f (3)

9.14112

3.841471 6.9092974

9.14112

13. Rows and Columns

gons_ider matrix A

Now to obtain 1st row:
—=>A(1,:)

J °

To chanfe R, — 2R,
——>A (1, :)=2+xA(1,)

6. 8.
6. 8.
9. 12.

To change C; — 5C}
——>A(:,1)=5%xA(:,1)

20. 6. 8.
20. 6. 8.
30. 9. 12.

To perform operation as Ry — R; — R
——>A(1,:)=A(1,:)-A(2,:)

A —

0. 0. 0.
20. 6. 8.
30. 9. 12.

To perform operation as [y — Ry — §R3

——>A(2,:)=A(2,:)—(2/3)*A(3,)

14. Graphics

——>deff { =f2(x)’,’y=3xxtx.*xsin(x)")
——>x= 00;

——>y= f2() i

——>plot (x,v)

To obtain 3-D figure for the equation 2z = z* — y*.

Note that command fplot3d has arguments as x, y and the

function f.
——>deff('z=f(x,y)’, " z=x"4-y~4")

——>x=-3:0.2:3 ;y=x ;

——>clf () ;fplot3d(x,vy,f)

Introduction

Special Symbols in scilab
"Jser defined functions
Rows and Columns
Graphics
Vewton-Raphson Method

I B e 300k on Scilab

= Home Page
-G0

Title Page
-40

44 42
4 >
Page 76 of 94

——>deff('z f(x,y)","z=x "3-y~37)
Warning redeflnlng function: £

——>x=-3:0.2:3 ;y=x ;

——>clf () ;fplot3d(x,y,f)

Introduction

Special Symbols in scilab
"Jser defined functions
Rows and Columns
Sraphics
Vewton-Raphson Method

_Q 300k on Scilab
Home Page

Title Page
>]
]

Page 78 of 94
Full Screen
.3
¥ i B

——>deff('z=f(x,y)’,’ z=sin(x"2)-y 2")
Warning :redefining function: £

-—>x=-3:0.2:3 ;y=x ;

——>clf () ;fplot3d(x,y,f)

LRI APV SR AV AV IV SR)

Introduction

Special Symbols in scilab
"Jser defined functions
Rows and Columns
Sraphics
Vewton-Raphson Method
Book on Scilab

Home Page
Title Page
44 42
< 4
Page 80 of 94
Full Screen
Close
Quit

Use of scilab by various ways:

e Solve Linear System of Equations
e Find roots of higher degree polynomials
e Find eigen values

e Evaluate matrix and polynomials with complex num-
bers

e Draw 2D and 3D figures

15. Newton-Raphson Method

f(x) and initial guess xy is given, find out ‘zero’ for f(x).

. f(xr)
T)

Let f(x) = cos(x), and 2y = 10

——>deff (' [y]=f(x)’,"y=cos(x)');

——>deff (' [y]=fl(x)’","'y=—sin(x)’);

—-—>g (10)

11.542351

—-—>g (ans)
ans =

10.933672

—-—>g (ans)
ans =

10.995653

—-—>g (ans)
ans =

10.995574

—-—>g (ans)
ans =

10.995574

—-—>function [y]=f
——>y=xxabs (x) / (1+x72) ;

——>endfunction

(x)

-——>x=(-5:0.1:5);

——>fplot2d (x, f)

Scilab Book Functions
e gausselimPP (also find inv(A)*B)

e CrossProd

e cigenvectors (clean using singular matrix)

® secant

Find the solution to the following linear system

4$1 + 856'2 + 4[1,’3 = &8
T+ 5372 + 4373 + —3.134 —4

T+ 4562 + 755'3 + 21‘4 10
1+ 3rs — 2204 = —4

Use Gauss Elimination Method. (Hint: gausselimPP)

Program in Newton Raphson

To compare alogorithms which are time wise faster we can

use function
timer()

Differential Equations:

solve and plot graph
-—>function udot = f(t,u)

——>udot = cos(t)
——>endfunction

——>t=0:.1:10;

-—>u=0de (0,0, t, f);
——>xbasc () ;plot2d(t,u)

Scilab for Computational Mathematics
Bhaskaracharya Pratishthana, 2010
Modeling and Simulation in Scilab/Scicos
Springer Publications

STEPHEN L. CAMPBELL

JEAN-PHILIPPE CHANCELIER

RAMINE NIKOUKHAH

References:

I. engr2200_lecturedscilab.txt
2. engre2200_ulecturescilab2.txt
3. lectures from 1 to 5

www.scilab.org

Introduction

Special Symbols in scilab
User defined functions
Rows and Columns
Graphics
Newton-Raphson Method
Book on Scilab

Home Page
Title Page
44 42
| 4
Page 93 of 94
Full Screen
Close
Quit

www.scilab.org

Thanks!

	factorial
	factor a number
	factoring real polynomials
	n-th roots
	Newton-Raphson Method
	Newton-Raphson: More zeros
	Bisection Method
	Linear Algebra
	Lagrange's Interpolation Formula
	About Scilab
	Special Symbols in scilab
	Gauss-Jordan elimination
	Eigenvalues
	Quiz

	User defined functions
	Rows and Columns
	Graphics
	Newton-Raphson Method
	Books on Scilab

