

Scilab

Prof. S. A. Katre

Dept. of Mathematics, University of Pune sakatre@math.unipune.ernet.in sakatre@gmail.com sakatre@bprim.org

December 25, 2009

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Page 1 of 94 Go Back Full Screen Close Quit

1. factorial

Scilab does exact computations to some extent. But KASH is a better software for this purpose.

```
-->factorial(6)
 ans
     720.
-->factorial(20)
 ans
     2.433D+18
-->factorial(12)
 ans
     4.790D+08
-->factorial(11)
 ans
     39916800.
```

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 2 of 94 Go Back Full Screen Close Quit

2. factor a number

Scilab can factor small numbers up to 10-12 digits, but not larger numbers. KASH software can factor numbers more efficiently.

```
-->factor(15)
 ans
    3. 5.
-->factor(1534561890)
 ans
    2. 3. 5. 271. 188753.
-->factor(15345618903452679)
 !--error 17
stack size exceeded!
Use stacksize function to increase it.
Memory used for variables: 34614
Intermediate memory needed: 123877436
```

Total memory available: 5000000

Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 3 of 94 Go Back Full Screen Close Quit

Introduction

```
at line 20 of function primes called by
line 25 of function factor called by :
factor (15345618903452679)
-->stacksize()
ans
   5000000. 34066.
-->stacksize(5000000)
-->stacksize()
ans
   50000000.
             34059.
```

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 4 of 94 Go Back Full Screen Close

```
User defined functions
                                                        Rows and Columns
-->factor(15345618903452679)
                                                        Graphics
                                                        Newton-Raphson Method
 !--error 17
                                                        Book on Scilab
stack size exceeded!
Use stacksize function to increase it.
                                                          Home Page
Memory used for variables: 34611
Intermediate memory needed: 123877436
                                                           Title Page
Total memory available: 50000000
               20 of function primes called by
at line
line 25 of function factor called by:
factor (15345618903452679)
                                                          Page 5 of 94
-->stacksize(50000000)
                          !--error 1504
                                                           Go Back
stacksize:
                                                          Full Screen
Out of bounds value. Not in [180000, 268435454].
```

Special Symbols in scilab

Close

```
-->stacksize(26000000)
                     !--error 999
stacksize: Cannot allocate more memory.
Try stacksize ('max').
 -->stacksize('max')
-->stacksize()
 ans
   50000000. 34059.
-->factor(15345618903452)
ans
   2. 2. 457813. 8379851.
```

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 6 of 94 Go Back Full Screen Close

3. factoring real polynomials

The 'polfact' function factorises the given polynomial with real coefficients into irreducible polynomials of degree 1 and 2 over reals. Note that since complex (nonreal) roots, if any, of a polynomial with real coefficients occur in cojugate pairs, combining 2 such roots we get a quadratic polynomial with real coefficients and this polynomial is irreducible over reals. Hence any nonconstant polynomial with real coefficients factorises as a product of linear and quadratic irreducible polynomials. The 'polfact' command in Scilab gives the leading coefficient at the beginning, then monic linear and quadratic irreducible factors. 'polfact' function does not factorise a polynomial with complex (nonreal) coefficients.

Χ

Special Symbols in scilab

User defined functions

Rows and Columns

Graphics

Book on Scilab

Home Page

Newton-Raphson Method

Title Page

44 >>>

→

Page 8 of 94

Go Back

Full Screen

Close

```
-->roots(x^7-1)
ans =

0.6234898 + 0.7818315i
0.6234898 - 0.7818315i
- 0.9009689 + 0.4338837i
- 0.9009689 - 0.4338837i
- 0.2225209 + 0.9749279i
- 0.2225209 - 0.9749279i
1.
```

See how the conjugate roots combine to give real quadratic factors.

```
-->polfact(3x^7+x-1)
!--error 276
Missing operator, comma, or semicolon.
```

The error was that we had to write $3 * x^7$. * was missing.


```
Special Symbols in scilab
                                                               User defined functions
-->polfact (3*x^7+x-1)
                                                               Rows and Columns
 ans
                                                               Graphics
                                                               Newton-Raphson Method
                                                               Book on Scilab
            column 1 to 3
                                                                  Home Page
     0.8749381+1.6575743x+x
                                      0.8088448+0.2295991x+x
                                                                   Title Page
            column 4 to 5
 0.6591506-1.1725921x+x -0.7145812+x
Here 3 is the leading coefficient seen at the beginning.
                                                                  Page 10 of 94
-->polfact(x^2+\%i)
 !--error 10000
                                                                   Go Back
polfact: Input argument #1 must be real.
                                                                  Full Screen
at line 19 of function polfact called by :
polfact(x^2+\%i)
```

Close

4. n-th roots

```
->%i
 응i
    i
 -->sqrt(%i)
 ans =
    0.7071068 + 0.7071068i
 -->(%i)^(1/3)
 ans =
    0.8660254 + 0.5i
-->(1)^(1/5)
 ans =
    1.
```

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 11 of 94

Go Back

Full Screen

Close

5. Newton-Raphson Method

f(x) and initial guess x_0 is given, find out 'zero' for f(x).

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Let
$$f(x) = \cos(x)$$
, and $x_0 = 10$

$$-->$$
deff('[y]=f(x)','y=cos(x)');

$$-->$$
deff('[y]=f1(x)','y=-sin(x)');

$$-->$$
deff('[y]=g(x)','y=x-f(x)/f1(x)');

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 12 of 94

Go Back

Full Screen

Close

```
-->g(10)
 ans
    11.542351
-->g(ans)
 ans
    10.933672
-->g(ans)
 ans
    10.995653
```



```
-->g(ans)
ans =
10.995574

-->g(ans)
ans =
10.995574
```

We get a fixed point of the function g. The value of g obtained is a root of the original function f. (N-R confusion. Mai Kahan Hoon? Ami Kothay?)

6. Newton-Raphson: More zeros

```
-->x=[0:.2:10]
      column 1 to 10
0. 0.2 0.4 0.6 0.8 1. 1.2 1.4 1.6
                                     1.8
     column 11 to 20
2. 2.2 2.4 2.6 2.8 3. 3.2 3.4 3.6 3.8
     column 21 to 30
4. 4.2 4.4 4.6 4.8 5. 5.2 5.4 5.6 5.8
     column 31 to 40
6. 6.2 6.4 6.6 6.8 7. 7.2 7.4 7.6 7.8
     column 41 to 50
8. 8.2 8.4 8.6 8.8 9. 9.2 9.4 9.6 9.8
     column 51
10.
```

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 15 of 94 Go Back Full Screen

Close

```
Introduction
                                                                 Special Symbols in scilab
-->\cos(x)
                                                                 User defined functions
                                                                 Rows and Columns
 ans
                                                                 Graphics
                                                                Newton-Raphson Method
           column 1 to 5
                                                                 Book on Scilab
                                                                   Home Page
1. 0.9800666 0.9210610 0.8253356 0.6967067
                                                                    Title Page
          column 6 to 10
0.5403023 0.3623578 0.1699671 -0.0291995 -0.2272021
          column 11 to 15
                                                                   Page 16 of 94
-0.4161468 \quad -0.5885011 \quad -0.7373937 \quad -0.8568888
                                                                 -0.942222
Go Back
          column 16 to 20
                                                                    Full Screen
-0.9899925 -0.9982948 -0.9667982 -0.8967584 -0.7999677
                                                                     Quit
```

```
Special Symbols in scilab
                                                                                                                                                                                                                                                                                                                                                              User defined functions
                                                                                                                                                                                                                                                                                                                                                              Rows and Columns
                                                     column 21 to 25
                                                                                                                                                                                                                                                                                                                                                              Graphics
                                                                                                                                                                                                                                                                                                                                                             Newton-Raphson Method
-0.6536436 -0.4902608 -0.3073329 -0.1121525
                                                                                                                                                                                                                                                                                                                                               0 . Books m scilato 90
                                                                                                                                                                                                                                                                                                                                                                               Home Page
                                                                    column 26 to 30
                                                                                                                                                                                                                                                                                                                                                                                 Title Page
0.2836622 0.4685167 0.6346929 0.7755659 0.8855195
                                                                    column 31 to 35
                                                                                                                                                                                                                                                                                                                                   0.8693975
Page 17 of 94
0.9601703 0.9965421 0.9931849 0.9502326
                                                                    column 36 to 40
                                                                                                                                                                                                                                                                                                                                                                                   Go Back
0.7539023 0.6083513 0.4385473 0.2512598 0.05395 General Control Contro
                                                                                                                                                                                                                                                                                                                                                                                      Close
```

column 41 to 45
-0.1455000 -0.3391549 -0.5192887 -0.6787200
column 46 to 50
-0.9111303 -0.9748436 -0.9996930 -0.9846879
column 51

We find from the above list of values of $\cos x$ from 0 to 10, that \cos changes sign 3 times in [0, 10]. We thus expect to find 3 zeros of $\cos x$, one between 1.4 and 1.6, one between 4.6 and 4.8, and one between 7.8 and 8.

-0.8390715

We use the Newton-Raphson formula

$$f(x_{n+1}) = x_n - f(x_n)/f'(x_n).$$

Let $f(x) = \cos(x)$, and consider the values of x for which f(x) is nearer to zero.

Thus let $x_0 = [1.6, 4.8, 7.8]$. The other way to get these values of x is to count the number of the terms starting from the first value i.e. 1. Here x is a vector. Since the 8th and the 9th values of $\cos x$ have opposite signs and the 9th value is closer to 0, we take x(9) as the initial approximation (which is 1.6). Similarly, x(25) = 4.8 and x(40) = 7.8 and we can as well take $x_0 = [x(9), x(25), x(40)]$

```
--> deff('[v]=f(x)','v=cos(x)');
-->deff('[y]=f1(x)','y=-sin(x)');
-->deff('[y]=q(x)','[y]= x-f(x)./f1(x)');
```

$$-->x0=[1.6,4.8,7.8]$$
 (vector of approximations full Screen constant in the second se

Introduction Special Symbols in scilab User defined functions

Graphics

Rows and Columns

Newton-Raphson Method Book on Scilab

Home Page

Title Page

Page 19 of 94

Go Back

Close

```
-->q(x0)
 ans =
     1.570788 4.7121641 7.8540341
-->q(ans)
 ans
     1.5707963 4.712389
                               7.8539816
-->q (ans)
 ans
     1.5707963 4.712389 7.8539816
(We have got the 3 zeros of cos x
between 0 and 10.)
-->%pi/2
 ans
     1.5707963
This checks that the zeros are \pi/2, 3\pi/2 and 5\pi/2 as ex-
pected.
```

Special Symbols in scilab
User defined functions

Rows and Columns

Graphics

Book on Scilab

Home Page

Newton-Raphson Method

Title Page

44 >>>

• •

Page 20 of 94

Go Back

Full Screen

Close

```
-->x=poly(0,'x')
x =
x
-->roots(x^3-x+1)
ans =
0.6623590 + 0.5622795i
0.6623590 - 0.5622795i
- 1.324718
```

The polynomial has 1 real root and 2 nonreal roots which are complex conjugates. Recall that complex roots of a polynomial with real coefficients occur in conjugate pairs.

Let us find a complex root of $f(x) = x^3 - x + 1$ by Newton Raphson method. To get it we have to start with a complex (nonreal) initial approximation, e.g. 1 + i.

```
-->f(1+%i)
 ans =
   -2. + i
-->deff('[y]=f(x)','y=x^3-x+1')
-->deff('[y]=f1(x)','y=3*x^2-1')
-->deff('[y]=q(x)','y=x-f(x)/f1(x)')
-->q(1+%i)
 ans
     0.7837838 + 0.7027027i
```

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 22 of 94

Go Back

Full Screen

Close

```
-->g(ans)
 ans
     0.6860940 + 0.5813564i
-->g(ans)
 ans =
     0.6633325 + 0.5625179i
-->q (ans)
 ans
     0.6623599 + 0.5622788i
-->q(ans)
 ans
     0.6623590 + 0.5622795i
-->g(ans)
 ans =
     0.6623590 + 0.5622795i
```

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Home Page

Book on Scilab

Title Page

Page 23 of 94

Go Back

Full Screen

Close

7. Bisection Method

The bisection method is very slow as compared to Newton Raphson method.

To find a root of f(x) we first find some CLOSE values of a and b for which f(a) and f(b) have opposite signs.

Then find c = (a+b)/2.

If f(a) and f(c) have same signs (so that f(b) and f(c) have opposite signs, consider c as better than a and replace a by c (i.e. put a=c) and keep b as it is.

If f(b) and f(c) have same signs, replace b by c, i.e. put b=c.

Then find c=(a+b)/2 for the new a and b and proceed till you get sufficiently close values of a and b. Then declare c=(a+b)/2 as an (approximate) root of f(x).

We shall now find a real root of $f(x) = x^3 - x + 1$ by bisection method.

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 24 of 94 Go Back Full Screen Close

```
-->x=poly(0,'x')
     X
-->roots (x^3-x+1)
 ans
     0.6623590 + 0.5622795i
    0.6623590 - 0.5622795i
  -1.324718
-->deff('[y]=f(x)','y=x^3-x+1')
-->f(3)
 ans
     25.
-->f(2)
 ans =
     7.
```

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 25 of 94

Go Back

Full Screen

Close

```
-->f(0)
                                                                        Introduction
 ans =
                                                                        Special Symbols in scilab
                                                                        User defined functions
                                                                        Rows and Columns
 -->f(-2)
                                                                        Graphics
                                                                        Newton-Raphson Method
 ans =
                                                                        Book on Scilab
    - 5.
                                                                           Home Page
-->a=0, b=-2
 a
     =
       0.
 b =
    - 2.
-->c=(a+b)/2
                                                                           Page 26 of 94
 ans =
    - 1.
 -->d=[a,b,c]
                                                                           Full Screen
 d =
       0. - 2. - 1.
 -->f(d)
 ans =
       1. - 5.
```

Title Page

Go Back

Close

```
-->a=c
 -->C
  - 1.
 (This c is not relevant.)
-->c=(a+b)/2
  - 1.5
-->d=[a,b,c],f(d)
 d =
   - 1. - 2. - 1.5
 ans =
     1. - 5. - 0.875
```

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Title Page

Home Page

Page 27 of 94

Go Back

Full Screen

Close

```
-->b=c
 - 1.5
-->c=(a+b)/2
C =
 - 1.25
-->d=[a,b,c],f(d)
d =
  -1. -1.5 -1.25
ans =
    1. - 0.875 0.296875
-->b=c, c=(a+b)/2, d=[a,b,c], f(d)
b =
  - 1.25
C =
  - 1.125
d =
  - 1. - 1.25 - 1.125
ans
    1. 0.296875 0.7011719
(We made a mistake in the choice of a,b.)
```

Special Symbols in scilab
User defined functions

Rows and Columns

Graphics
Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 28 of 94

Go Back

Full Screen

Close

```
-->a=-1,b=-1.5,c=-1.25
  - 1.
  - 1.5
 C =
  - 1.25
 -->a=c
  - 1.25
-->c=(a+b)/2, d=[a,b,c], f(d)
C =
  -1.375
 d =
  -1.25 - 1.5 - 1.375
 ans =
    0.296875 - 0.875 - 0.2246094
```

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 29 of 94

Go Back

Full Screen

Close

```
-->b=c
  -1.375
-->c=(a+b)/2, d=[a,b,c], f(d)
  - 1.3125
 d =
  -1.25 - 1.375 - 1.3125
 ans =
    0.296875 - 0.2246094 0.0515137
 --> a=c;
-->c=(a+b)/2, d=[a,b,c], f(d)
C =
  -1.34375
 d =
  -1.3125 - 1.375 - 1.34375
 ans
    0.0515137 - 0.2246094 - 0.0826111
```

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Book on Scilab

Newton-Raphson Method

Home Page

Title Page

44 >>>

• •

Page 30 of 94

Go Back

Full Screen

Close

```
-->b=c
                                                          Introduction
   -1.34375
                                                          Special Symbols in scilab
                                                          User defined functions
                                                          Rows and Columns
-->c=(a+b)/2, d=[a,b,c], f(d)
                                                          Graphics
                                                          Newton-Raphson Method
                                                          Book on Scilab
   - 1.328125
   -1.3125 - 1.34375 - 1.328125
 ans
       =
      0.0515137 - 0.0826111 - 0.0145760
-->b=c
 b =
   - 1.328125
-->c=(a+b)/2, d=[a,b,c], f(d)
   - 1.3203125
 d =
   -1.3125 - 1.328125 - 1.3203125
 ans
      0.0515137 - 0.0145760 0.0187106
```

Home Page

Title Page

Page 31 of 94

Go Back

Full Screen

Close

```
-->a=c
                                                              Introduction
    - 1.3203125
                                                              Special Symbols in scilab
                                                              User defined functions
-->c=(a+b)/2, d=[a,b,c], f(d)
                                                              Rows and Columns
                                                              Graphics
                                                              Newton-Raphson Method
    - 1.3242188
                                                              Book on Scilab
 d =
    -1.3203125 - 1.328125 - 1.3242188
                                                                 Home Page
 ans
                                                                  Title Page
      0.0187106 - 0.0145760 0.0021279
-->a=c
 a =
   - 1.3242188
                                                                 Page 32 of 94
-->c=(a+b)/2, d=[a,b,c], f(d)
                                                                  Go Back
 C =
    -1.3261719
                                                                 Full Screen
 d =
    -1.3242188 - 1.328125 - 1.3261719
                                                                   Close
 ans
      0.0021279 - 0.0145760 - 0.0062088
                                                                   Quit
```

```
-->b=c
                                                              Introduction
   - 1.3261719
                                                              Special Symbols in scilab
                                                              User defined functions
-->c=(a+b)/2, d=[a,b,c], f(d)
                                                              Rows and Columns
                                                              Graphics
 C
                                                              Newton-Raphson Method
   -1.3251953
                                                              Book on Scilab
 d =
   -1.3242188 - 1.3261719 - 1.3251953
                                                                 Home Page
 ans
                                                                  Title Page
      0.0021279 - 0.0062088 - 0.0020367
-->b=c
 b =
   -1.3251953
                                                                 Page 33 of 94
-->c=(a+b)/2, d=[a,b,c], f(d)
                                                                  Go Back
   -1.324707
                                                                 Full Screen
 d =
   -1.3242188 - 1.3251953 - 1.324707
                                                                   Close
 ans
      0.0021279 - 0.0020367 0.0000466
                                                                   Quit
```

The answer by Newton Raphson method comes out to be -1.324718 in a few steps only and f(-1.324718) is -.0000002. This example illustrates that Newton Raphson method which has quadratic convergence is far superior to bisection method

Introduction

Special Symbols in scilab
User defined functions

Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 34 of 94

Go Back

Full Screen

Close

8. Linear Algebra

Finding eigenvalues and eigenvectors

Introduction

Special Symbols in scilab User defined functions

Rows and Columns

Book on Scilab

Graphics

Newton-Raphson Method

Consortium Scilab (DIGITEO)

Copyright (c) 1989-2008 (INRIA)

Copyright (c) 1989-2007 (ENPC)

scilab-5.0.2

Home Page

Title Page

Page 35 of 94

Go Back

Full Screen

Close

Quit

Startup execution:

loading initial environment

$$-->A=10*rand(3,3)$$

Α

2.1132487

6.653811

8.4974524 6.8573102

7.5604385

3.3032709

8.7821648

0.0022113

6.2839179

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 36 of 94

Go Back

Full Screen

Close

```
-->_{\nabla}(1)
ans =
    0.3004267 + 3.5633462i
-->spec(A)
 ans
    0.3004267 + 3.5633462i
    0.3004267 - 3.5633462i
    16.948371
-->rref (A-v(1) *eye(3,3))
 ans
    1.
          0 0.0401986 + 1.113006i
          1. 1.349739 - 0.5674497i
```

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 37 of 94

Go Back

Full Screen

Close

```
-->w=[-ans(1,3);-ans(2,3);1]
W
  - 0.0401986 - 1.113006i
  -1.349739 + 0.5674497i
    1.
--> (A-v(1) *eye(3,3)) *w
 ans =
   1.0D-14 *
  - 1.9290125i
    0.2664535 - 0.0888178i
  -0.0444089i
-->clean(ans)
ans
```

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method
Book on Scilab

Home Page

Title Page

Page 38 of 94

Go Back

Full Screen

Close

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 39 of 94 Go Back Full Screen Close

9. Lagrange's Interpolation Formula

scilab-5.1.1

Consortium Scilab (DIGITEO)
Copyright (c) 1989-2009 (INRIA)
Copyright (c) 1989-2007 (ENPC)

Startup execution: loading initial environment

$$-->v=[2,3]$$
 $v =$

2. 3.

5.

```
-->deff('z=f(x,y,t)','z=x+y+t')
Warning : redefining function: f
Use funcprot(0) to avoid this message
```

Introduction

Special Symbols in scilab

User defined functions

Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 40 of 94

Go Back

Full Screen

Close

```
-->f(1,2,3)
ans =
   6.
-->v=[1,2,9]
\nabla =
   1. 2. 9.
-->f(v(1),v(2),v(3))
ans =
   12.
-->a=[2,4,6,-10]
a =
   2. 4. 6. - 10.
-->b=[5,10,18,-25]
b =
   5. 10. 18. - 25.
```

-->x=poly(0,'x')

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 41 of 94

Go Back

Full Screen

Close

```
Introduction
                                                                                  Special Symbols in scilab
                                                                                  User defined functions
 X =
                                                                                  Rows and Columns
                                                                                  Graphics
    Χ
                                                                                  Newton-Raphson Method
                                                                                  Book on Scilab
-->[a,b]
 ans =
                                                                                      Home Page
    2.
           4. 6. - 10. 5. 10. 18. - 25.
                                                                                      Title Page
-->[a;b]
 ans =
    2.
                   6. - 10.
           4.
    5.
          10.
                  18. - 25.
--> deff('w=f(y,z,t,u,v)','w=v*(x-z)*(x-t)*(x-u)/((y-z)*(y-t)*(y-u))')
Warning: redefining function: f
                                                              . Use funcprot(0) to ##@igofthis
                                                                                       Go Back
-->f(2,4,6,-10,5)
 ans =
                                                                                      Full Screen
    12.5 - 3.9583333x + 0.0520833x
-->c=[f(a(1),a(2),a(3),a(4),b(1)),f(a(2),a(1),a(3),a(4),b(2)),f(a(3),a(2),a(1),a(4),b(3)
                                                                                        Quit
```

С column 1 12.5 - 3.9583333x + 0.0520833xcolumn 2 -21.428571 + 12.142857x - 0.3571429x - 0.1785714xcolumn 3 11.25 - 7.3125x + 0.5625x + 0.140625xcolumn 4 -0.4464286 + 0.4092262x - 0.1116071x + 0.0093006x-->sum(c) ans =

1.875 + 1.28125x + 0.09375x + 0.0234375x

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 43 of 94

Go Back

Full Screen

Close

This gives the required interpolating polynomial.

This presentation is prepared using

PDFScreen

package with LATEX.

10. About Scilab

- Scilab is a free software and is similar to the commercial software MatLab. It is prepared by a team of French mathematicians/computer scientists (INRIA).
- Version scilab-5.1.1 is available in 2009.
- It can work on windows as well as linux.
- Scilab understands many mathematical data types like vector, matrix, polynomial etc.
- Scilab has inbuilt functions.
- It also allow us to do programming, in which we can use inbuilt commands e.g. rank, inv etc.
- ullet Scilab is case sensitive. So V and v are different in scilab.

- 1. Scilab has an editor called Scipad.
- 2. Scilab has graphics window.
- 3. Scilab provides good help.
- 4. You can get help on a specific topic by a simple command such as 'help Matrix'.
- 5. Scilab has demos.

In Scilab, vector and matrix are basic data types. A vector may also be considered as a matrix for computations.

$$-->$$
V= $[2,-4,5]$

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 48 of 94

Go Back

Full Screen

Close

Define two vectors U and V and try U + V.

U * V

U * V' What are your observations?

Try with other inbuilt functions of scilab for vectors such as norm(V)

size(U) etc.

Products of vectors:

Dot product (a scalar) and component-wise product (a vector):

```
-->u
u = 0
1. 2. 3.
v = 0
2. 3. 4.
```

```
-->u*v
!--error 10
inconsistent multiplication
```

```
-->u.*v
ans =
2. 6. 12.
```


Close

$$-->u*v'$$
 ans $=$ 20.

-->u' *v

6.

9. 12.

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 51 of 94 Go Back Full Screen

Close

Other interesting data type in scilab is Matrix. Here is an example of writing a matrix in scilab.

- 1. 2
- 3. 4

Now try to write a matrix A such that $A = \begin{bmatrix} 1 & -3 & 2.4 \\ .5 & 0 & 3 \end{bmatrix}$

Introduction

Special Symbols in scilab
User defined functions

Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 52 of 94

Go Back

Full Screen

Close

Try the following matrix operations for matrices of appropriate size :

- A+B
- 3*A
- A*B
- B*A
- A-B
- A^{20}

Using various commands for matrix operations and in built functions, it becomes easy to explain concepts in linear algebra at the college level.

For matrices there are in built commands to get elements, like

- A(2,1) (Gives the element in the second row and first column.)
- A(4) (Gives 4th element of the matrix, considering the matrix as a column-wise array)
- A(:,1) (All elements of the 1st column.)
- A(2,:) (All elements of the 2nd row.)
- size(A) (The number of rows and columns.)
- length(A) (The number of elements.)
- sum(A) (The sum of all elements.)
- trace(A)
- \bullet det(A)
- inv(A)
- spec(A)

11. Special Symbols in scilab

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 55 of 94 Go Back Full Screen Close

Trignometric functions

1.

1.

Other types of matrices:

- zeros(3,2)
- ones(3,2)
- clean(inv(A))

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 57 of 94

Go Back

Full Screen

Close

Х

$$-->A=[x,2*x;x^2,x+3]$$

A =

x 2x

2

x 3 + x

-->det(A) ans =

 $2 \qquad 3x + x - 2x$

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 58 of 94

Go Back

Full Screen

Close

It is also possible to find inverse of symbolic matrix. —>inv(A)

ans =

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 59 of 94

Go Back

Full Screen

Close

$$--> roots (x^2-3*x+4)$$
ans =

$$1.5 + 1.3228757i$$

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 60 of 94

Go Back

Full Screen

Close

Another way to define polynomial

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 61 of 94

Go Back

Full Screen

Close

11.1. Gauss-Jordan elimination

row-reduced echelon form First form augmented matrix:

- ! 3. 2. 5. !
- ! 5. 1. 4.!
- ! 2. 6. 5. !

- ! 100.!
- ! 250.!
- ! 300.!

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 62 of 94

Go Back

Full Screen

Close

Use function rref to get the row-reduced echelon form:

```
1. 0. 0. 36.809816!
! 0. 1. 0. 96.01227 !
  0. 0. 1. 40.490798!
```

This matrix gives the solution of X, Y, Z

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 63 of 94 Go Back

Full Screen

Close

11.2. Eigenvalues

To form the characteristic matrix, first define the polynomial variable 'lam' i.e. λ :

```
-->lam = poly(0,'lam')
 lam
    lam
-->[m n] = size(A)
 n
    3.
m
    3.
```

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 64 of 94

Go Back

Full Screen

Close

Form the characteristic matrix as follows:

The characteristic polynomial is the determinant of the characteristic matrix:

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 65 of 94

Go Back

Full Screen

Close

The eigenvalues are the roots of the characteristic polynomial. These can be found using function 'roots':

```
-->lam = roots(p)
lam =

! 3.5878707 + 1.7736044i !
! 3.5878707 - 1.7736044i !
! - 10.175741 !
```

Function 'spec' calculates eigenvalues in the fourth column.

11.3. Quiz

- 1. To get help in scilab what should you enter?
- 2. To see the demo of plot command what should you enter?
- 3. How to get transpose of a vector?
- 4. What is the difference between u * v and u . * v

Problem Set

- 1. Find factorial(6). Get it also for 10, 11, 12, 50 and see the difference.
- 2. Find factors of numbers upto 10-12 digits. Try factoring numbers with more digits.
- 3. Express the numbers i, π , e using Scilab.
- 4. Find factors of a polynomial with real coefficients using 'polfact'.

Note: First use "x = poly(0, 'x')" to define the variable x. Using polfact command you will get factors which are of degree 1 or 2 with real coefficients. Try factoring a polynomial with complex coefficients.

- 5. Find a real root of $f(x) = x^3 x + 1$ using Newton-Raphson Method. Also find all roots using 'roots' command.
- 6. Find all roots of $f(x) = 2\cos x 1$ between 1 and 10 using Newton-Raphson method.
- 7. Use bisection method to find a root of $f(x) = e^x 2$.
- 8. Can you find a root of $f(x) = e^x$ using Scilab?

Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 68 of 94 Go Back Full Screen Close

Quit

Introduction

12. User defined functions

```
Inline function:
-->deff('[y]=f(x)','y=3*x+sin(x)')
-->f(3)
 ans =
    9.14112
-->u
 11
                 3.
    1. 2.
-->f(u)
 ans =
    3.841471 6.9092974 9.14112
```

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 69 of 94

Go Back

Full Screen

Close

13. Rows and Columns

 $\underset{\mathbb{A}}{\operatorname{Consider}} \ \operatorname{matrix} \ A$

2. 3. 4.

4. 6. 8.

6. 9. 12.

Now to obtain 1st row: -->A(1,:)

ans =

2. 3. 4.

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 70 of 94

Go Back

Full Screen

Close

To change
$$R_1 \rightarrow 2R_1$$

-->A(1,:)=2*A(1,:)
A =

To change
$$C_1 \to 5C_1$$

-->A(:,1)=5*A(:,1)

$$A = 20. 6. 8.$$

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 71 of 94

Go Back

Full Screen

Close

To perform operation as
$$R_1 \rightarrow R_1 - R_2$$

-->A(1,:)=A(1,:)-A(2,:)

To perform operation as
$$R_2 \rightarrow R_2 - \frac{2}{3}R_3$$

-->A(2,:)=A(2,:)-(2/3)*A(3,:)
A =

-->

Introduction

Special Symbols in scilab

User defined functions

Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 72 of 94

Go Back

Full Screen

Close

14. Graphics

```
-->deff('[y]=f2(x)','y=3*x+x.*sin(x)')
-->x=1:.5:100;
-->y=f2(x);
-->plot(x,y)
```

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 73 of 94 Go Back Full Screen

Close

Special Symbols in scilab

'Jser defined functions

Rows and Columns
Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 74 of 94

Go Back

Full Screen

Close

To obtain 3-D figure for the equation $z = x^4 - y^4$. Note that command **fplot3d** has arguments as x, y and the function f.

$$-->$$
deff('z=f(x,y)','z=x^4-y^4')

$$-->x=-3:0.2:3$$
; $y=x$;

$$-->$$
clf();fplot3d(x,y,f)

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 75 of 94

Go Back

Full Screen

Close

Special Symbols in scilab

'Jser defined functions

Rows and Columns

Graphics

Vewton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 76 of 94

Go Back

Full Screen

Close

```
-->deff('z=f(x,y)','z=x^3-y^3')
Warning :redefining function: f

-->x=-3:0.2:3 ;y=x ;
```

-->clf(); fplot3d(x,y,f)

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 77 of 94

Go Back

Full Screen

Close

Special Symbols in scilab

'Jser defined functions
Rows and Columns

Graphics

Vewton-Raphson Method

3ook on Scilab

Home Page

Title Page

Page 78 of 94

Go Back

Full Screen

Close

```
-->deff('z=f(x,y)','z=sin(x^2)-y^2')
Warning :redefining function: f

-->x=-3:0.2:3 ;y=x ;

-->clf() ;fplot3d(x,y,f)
```

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 79 of 94

Go Back

Full Screen

Close

Special Symbols in scilab

'Jser defined functions

Rows and Columns
Graphics

Vewton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 80 of 94

Go Back

Full Screen

Close

Use of scilab by various ways:

- Solve Linear System of Equations
- Find roots of higher degree polynomials
- Find eigen values
- Evaluate matrix and polynomials with complex numbers
- Draw 2D and 3D figures

15. Newton-Raphson Method

f(x) and initial guess x_0 is given, find out 'zero' for f(x).

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Let
$$f(x) = \cos(x)$$
, and $x_0 = 10$

$$-->$$
deff('[y]=f(x)','y=cos(x)');

$$-->$$
deff('[y]=f1(x)','y=-sin(x)');

$$-->$$
deff('[y]=g(x)','y=x-f(x)/f1(x)');

Introduction

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 82 of 94

Go Back

Full Screen

Close

```
-->g(10)
 ans
    11.542351
-->g(ans)
 ans
    10.933672
-->g(ans)
 ans
    10.995653
```



```
-->g(ans)
ans =

10.995574

-->g(ans)
ans =

10.995574
```


Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 85 of 94

Go Back

Full Screen

Close

$$-->x=(-5:0.1:5);$$

$$-->$$
fplot2d(x,f)

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 86 of 94

Go Back

Full Screen

Close

Special Symbols in scilab

User defined functions
Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 87 of 94

Go Back

Full Screen

Close

Scilab Book Functions

- gausselimPP (also find inv(A)*B)
- CrossProd
- eigenvectors (clean using singular matrix)
- secant

Find the solution to the following linear system

$$4x_1 + 8x_2 + 4x_3 = 8$$

$$x_1 + 5x_2 + 4x_3 + -3x_4 = -4$$

$$x_1 + 4x_2 + 7x_3 + 2x_4 = 10$$

$$x_1 + 3x_2 - 2x_4 = -4$$

Use Gauss Elimination Method. (*Hint*: gausselimPP)

Introduction
Special Symbols in scilab
User defined functions
Rows and Columns
Graphics
Newton-Raphson Method
Book on Scilab
Home Page

Page 89 of 94

Go Back

Full Screen

Close

Program in Newton Raphson

To compare alogorithms which are time wise faster we can use function timer()


```
Differential Equations:
solve and plot graph
-->function udot = f(t,u)
-->udot = cos(t)
-->endfunction

-->t=0:.1:10;

-->u=ode(0,0,t,f);
-->xbasc();plot2d(t,u)
```

Introduction Special Symbols in scilab User defined functions Rows and Columns Graphics Newton-Raphson Method Book on Scilab Home Page Title Page Page 92 of 94 Go Back Full Screen Close

16. Books on Scilab

Scilab for Computational Mathematics

Bhaskaracharya Pratishthana, 2010

Modeling and Simulation in Scilab/Scicos

Springer Publications

STEPHEN L. CAMPBELL

JEAN-PHILIPPE CHANCELIER

RAMINE NIKOUKHAH

References:

- 1. engr2200_lecture4scilab.txt
- 2. engre2200_ulecturescilab2.txt
- 3. lectures from 1 to 5

www.scilab.org

Introduction

Special Symbols in scilab
User defined functions

Rows and Columns

Graphics

Newton-Raphson Method

Book on Scilab

Home Page

Title Page

Page 93 of 94

Go Back

Full Screen

Close

Thanks!

