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Outline

I Weight reduction ODE model - analytical solution
I Numerical integration

I Functions in Scilab
I Euler’s method

I Predator-prey system
I Modelling
I Euler method - user created integrator
I Backward difference method - built-in function
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Weight Reduction Model

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

dx

dt
= −0.1x

Initial conditions:

x = 100 at t=0

Determine x(t) as a function of t.
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Analytical Solution of Simple Model

Recall the model:

dx

dt
= −0.1x

x(t = 0) = 100

Cross multiplying,
dx

x
= −0.1dt

Integrating both sides from 0 to t,∫
dx

x
= −0.1

∫
dt

C + ln x(t) = −0.1t

Using initial conditions,

C = − ln 100

Thus, the final solution is,

ln
x(t)

100
= −0.1t or x(t) = 100e−0.1t
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Summary of Weight Reduction Problem

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

x(t) = 100e−0.1t

Compute and plot for two years, i.e. for 24 months:

1 T= 0 : 0 . 1 : 2 4 ;
2 p l o t 2 d (T, 1 0 0∗ exp (−0.1∗T ) ) ;
3 x t i t l e ( ’ Weight v s . month ’ , ’ Time i n months ’ , . .
4 ’ Weight ( kg ) ’ )
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Need for Numerical Solution

I Exact solution is ok for simple models

I What if the model is complicated?

I Consider integrating the more difficult problem:

dx

dt
=

2 + 18t + 68t2 + 180t3 + 250t4 + 250t5

x2

with initial condition,

x(t = 0) = 1

I Analytical (i.e. exact) solution difficult to find
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Simplest Numerical Solution: Explicit Euler

I Suppose that we want to integrate the following system:

dx

dt
= g(x , t)

with initial condition:

x(t = 0) = x0

I Approximate numerical method - divide time into equal
intervals: t0, t1, t2, etc.

xn − xn−1

∆t
= g(xn−1, tn−1)

I Simplifying,

xn − xn−1 = ∆t g(xn−1, tn−1)

xn = xn−1 + ∆t g(xn−1, tn−1)

I Given x0, can march forward and determine xn for all
future n.
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Example revisited

Recall the problem statement for numerical solution:

dx

dt
=

2 + 18t + 68t2 + 180t3 + 250t4 + 250t5

x2

with initial condition,

x(t = 0) = 1

Recall the Euler method:

dx

dt
= g(x , t)

Solution for initial condition, x(t = 0) = x0 is,

xn = xn−1 + ∆t g(xn−1, tn−1)
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Scilab Code

1 g e t f ( ” d i f f 1 . s c i ” ) ;
2 g e t f ( ” E u l e r . s c i ” ) ;
3 x0 =1; t0 =0; T= 0 : 0 . 1 : 2 4 ;
4 s o l = E u l e r ( x0 , t0 , T , d i f f 1 ) ;
5 / / s o l = o d e ( x 0 , t 0 , T , d i f f 1 ) ;

6 p l o t 2 d (T , s o l ) , pause
7 p l o t 2 d (T,1+2∗T+5∗Tˆ 2 , 5 )
8 x t i t l e ( ’ x v s . t : P o l y n o m i a l Problem ’ , ’ t ’ , ’ x ’ )

1 f u n c t i o n x = E u l e r ( x0 , t0 , t , g )
2 n = l e n g t h ( t ) , x = x0 ;
3 f o r j = 1 : n−1
4 x0 = x0 + ( t ( j +1)− t ( j ) ) ∗ g ( t ( j ) , x0 ) ;
5 x = [ x x0 ] ;
6 end ;

1 f u n c t i o n xdot = d i f f 1 ( t , x )
2 xdot = (2+18∗ t +68∗ t ˆ2+180∗ t ˆ3+250∗ t ˆ4+250∗ t ˆ5)/ x ˆ 2 ;
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Numerical Solution, Compared with Exact Solution
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Predator-Prey Problem

I Population dynamics of predator-prey

I Prey can find food, but gets killed on meeting predator
I Examples: parasites and certain hosts; wolves and

rabbits
I x1(t) - number of prey; x2(t) - number of predator at

time t
I Prey, if left alone, grows at a rate proportional to x1

I Predator, on meeting prey, kills it ⇒ proportional to x1x2

dx1

dt
= 0.25x1 − 0.01x1x2

I Predator, if left alone, decrease by natural causes
I Predators increase their number on meeting prey

dx2

dt
= −x2 + 0.01x1x2

I Determine x1(t), x2(t) when x1(0) = 80, x2(0) = 30
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Explicit Euler for a System of Equations

dx1

dt
= g1(x1, . . . , xn, t)

...

dxN

dt
= gn(x1, . . . , xn, t)

d

dt

x1

...
xn

 =

g1(x1, . . . , xn, t − 1)
...

gn(x1, . . . , xn, t − 1)


x1

...
xn


t

=

x1

...
xn


t−1

+ ∆t

g1((x1, . . . , xn)|t−1, t − 1)
...

gN((x1, . . . , xn)|t−1, t − 1)


Solution in vector form:

x t = x t−1 + ∆tg(x t−1)
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Scilab Code for Predator-Prey Problem

1 g e t f ( ” pred . s c i ” ) ;
2 g e t f ( ” E u l e r . s c i ” ) ;
3 x0 = [ 8 0 , 3 0 ] ’ ; t0 =0; T= 0 : 0 . 1 : 2 0 ; T=T ’ ;
4 / / s o l = E u l e r ( x0 , t 0 , T , p r e d ) ;

5 s o l = ode ( x0 , t0 , T , pred ) ;
6 c l f ( ) ;
7 p l o t 2 d (T , s o l ’ )
8 x s e t ( ’ window ’ , 1 )
9 p l o t 2 d ( s o l ( 2 , : ) , s o l ( 1 , : ) )

1 f u n c t i o n x = E u l e r ( x0 , t0 , t , g )
2 n = l e n g t h ( t ) , x = x0 ;
3 f o r j = 1 : n−1
4 x0 = x0 + ( t ( j +1)− t ( j ) )∗ g ( t ( j ) , x0 ) ;
5 x = [ x x0 ] ;
6 end ;

1 f u n c t i o n xdot = pred ( t , x )
2 xdot ( 1 ) = 0 . 2 5∗ x (1) −0.01∗ x ( 1 )∗ x ( 2 ) ;
3 xdot ( 2 ) = −x (2)+0.01∗ x ( 1 )∗ x ( 2 ) ;
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Predator-Prey Problem: Solution by Euler
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As step size increases, the solution diverges more from the
actual.
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General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative
I Approximation of using previous time values does not

work
I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK

I FOSS
I In use for thirty years
I Bugs have been removed by millions of users
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Predator-Prey Problem by Scilab Integrator

Execute the following code, after commenting out Euler and
uncommenting ode:

1 g e t f ( ” pred . s c i ” ) ;
2 g e t f ( ” E u l e r . s c i ” ) ;
3 x0 = [ 8 0 , 3 0 ] ’ ; t0 =0; T= 0 : 0 . 1 : 2 0 ; T=T ’ ;
4 / / s o l = E u l e r ( x0 , t 0 , T , p r e d ) ;

5 s o l = ode ( x0 , t0 , T , pred ) ;
6 c l f ( ) ;
7 p l o t 2 d (T , s o l ’ )
8 x s e t ( ’ window ’ , 1 )
9 p l o t 2 d ( s o l ( 2 , : ) , s o l ( 1 , : ) )

1 f u n c t i o n xdot = pred ( t , x )
2 xdot ( 1 ) = 0 . 2 5∗ x (1) −0.01∗ x ( 1 )∗ x ( 2 ) ;
3 xdot ( 2 ) = −x (2)+0.01∗ x ( 1 )∗ x ( 2 ) ;
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Predator-Prey Problem: Solution by Scilab Integrator

15 19 23 27 31 35 39
70

80

90

100

110
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130

Predator−Prey by Scilab integrator

Predator

Prey

Use the Scilab built-in integrator to get the correct solution
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Partial Differential Equations
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Parabolic Differential Equations

I Heat conduction equation

I Diffusion equation

∂u(t, x)

∂t
= c

∂2u(t, x)

∂x2

I Initial condition:

u(0, x) = g(x), 0 ≤ x ≤ 1

I Boundary conditions:

u(t, 0) = α, u(t, 1) = β, t ≥ 0

I Let um
j be approximate solution at xj = j∆x, tm = m∆t

um+1
j − um

j

∆t
=

c

(∆x)2
(um

j−1 − 2um
j + um

j+1)
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Finite Difference Approach

um+1
j − um

j

∆t
=

c

(∆x)2
(um

j−1 − 2um
j + um

j+1), µ =
c∆t

(∆x)2

um+1
j = um

j + µ(um
j−1 − 2um

j + um
j+1)

= µum
j−1 + (1− 2µ)um

j + µum
j+1

Write this equation at every spatial grid:

um+1
1 = µum

0 + (1− 2µ)um
1 + µum

2

um+1
2 = µum

1 + (1− 2µ)um
2 + µum

3

...

um+1
N = µum

N−1 + (1− 2µ)um
N + µum

N+1
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Finite Difference Approach - Continued

um+1
1 = µum

0 + (1− 2µ)um
1 + µum

2

um+1
2 = µum

1 + (1− 2µ)um
2 + µum

3

...

um+1
N = µum

N−1 + (1− 2µ)um
N + µum

N+1

In matrix form,
u1

u2
...

uN


m+1

=


1− 2µ µ
µ 1− 2µ µ

. . .

µ 1− 2µ




u1

u2
...

uN


m

+


µum

0

0
...

µum
N+1


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Conclusions

I Scilab is ideal for educational institutions, including
schools

I Built on a sound numerical platform

I It has good integrators for differential equations

I It is free

I Also suitable for industrial applications
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Thank you
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