
Differential equations using Scilab

Kannan M. Moudgalya
IIT Bombay

http://moudgalya.org
kannan@iitb.ac.in

Scilab Training
MITCOE

21 December 2009

Kannan Moudgalya Differential equations using Scilab 1/24

Outline

I Weight reduction ODE model - analytical solution
I Numerical integration

I Functions in Scilab
I Euler’s method

I Predator-prey system
I Modelling
I Euler method - user created integrator
I Backward difference method - built-in function

Kannan Moudgalya Differential equations using Scilab 2/24

Weight Reduction Model

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

dx

dt
= −0.1x

Initial conditions:

x = 100 at t=0

Determine x(t) as a function of t.

Kannan Moudgalya Differential equations using Scilab 3/24

Weight Reduction Model

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

dx

dt
= −0.1x

Initial conditions:

x = 100 at t=0

Determine x(t) as a function of t.

Kannan Moudgalya Differential equations using Scilab 3/24

Weight Reduction Model

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

dx

dt
= −0.1x

Initial conditions:

x = 100 at t=0

Determine x(t) as a function of t.

Kannan Moudgalya Differential equations using Scilab 3/24

Weight Reduction Model

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

dx

dt
= −0.1x

Initial conditions:

x = 100 at t=0

Determine x(t) as a function of t.

Kannan Moudgalya Differential equations using Scilab 3/24

Weight Reduction Model

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

dx

dt
= −0.1x

Initial conditions:

x = 100 at t=0

Determine x(t) as a function of t.

Kannan Moudgalya Differential equations using Scilab 3/24

Weight Reduction Model

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

dx

dt
= −0.1x

Initial conditions:

x = 100

at t=0

Determine x(t) as a function of t.

Kannan Moudgalya Differential equations using Scilab 3/24

Weight Reduction Model

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

dx

dt
= −0.1x

Initial conditions:

x = 100 at t=0

Determine x(t) as a function of t.

Kannan Moudgalya Differential equations using Scilab 3/24

Weight Reduction Model

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

dx

dt
= −0.1x

Initial conditions:

x = 100 at t=0

Determine x(t) as a function of t.

Kannan Moudgalya Differential equations using Scilab 3/24

Analytical Solution of Simple Model

Recall the model:

dx

dt
= −0.1x

x(t = 0) = 100

Cross multiplying,
dx

x
= −0.1dt

Integrating both sides from 0 to t,∫
dx

x
= −0.1

∫
dt

C + ln x(t) = −0.1t

Using initial conditions,

C = − ln 100

Thus, the final solution is,

ln
x(t)

100
= −0.1t or x(t) = 100e−0.1t

Kannan Moudgalya Differential equations using Scilab 4/24

Summary of Weight Reduction Problem

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

x(t) = 100e−0.1t

Compute and plot for two years, i.e. for 24 months:

1 T= 0 : 0 . 1 : 2 4 ;
2 p l o t 2 d (T, 1 0 0∗ exp (−0.1∗T)) ;
3 x t i t l e (’ Weight v s . month ’ , ’ Time i n months ’ , . .
4 ’ Weight (kg) ’)

Kannan Moudgalya Differential equations using Scilab 5/24

Summary of Weight Reduction Problem

I Weight of person = x kg

I Tries to reduce weight

I Weight loss per month = 10% of weight

I Starting weight = 100 kg

x(t) = 100e−0.1t

Compute and plot for two years, i.e. for 24 months:

1 T= 0 : 0 . 1 : 2 4 ;
2 p l o t 2 d (T, 1 0 0∗ exp (−0.1∗T)) ;
3 x t i t l e (’ Weight v s . month ’ , ’ Time i n months ’ , . .
4 ’ Weight (kg) ’)

Kannan Moudgalya Differential equations using Scilab 5/24

0 4 8 12 16 20 24
0

10

20

30

40

50

60

70

80

90

100

Weight vs. month

Time, in months

Weight (kg)

Kannan Moudgalya Differential equations using Scilab 6/24

Need for Numerical Solution

I Exact solution is ok for simple models

I What if the model is complicated?

I Consider integrating the more difficult problem:

dx

dt
=

2 + 18t + 68t2 + 180t3 + 250t4 + 250t5

x2

with initial condition,

x(t = 0) = 1

I Analytical (i.e. exact) solution difficult to find

Kannan Moudgalya Differential equations using Scilab 7/24

Need for Numerical Solution

I Exact solution is ok for simple models

I What if the model is complicated?

I Consider integrating the more difficult problem:

dx

dt
=

2 + 18t + 68t2 + 180t3 + 250t4 + 250t5

x2

with initial condition,

x(t = 0) = 1

I Analytical (i.e. exact) solution difficult to find

Kannan Moudgalya Differential equations using Scilab 7/24

Need for Numerical Solution

I Exact solution is ok for simple models

I What if the model is complicated?

I Consider integrating the more difficult problem:

dx

dt
=

2 + 18t + 68t2 + 180t3 + 250t4 + 250t5

x2

with initial condition,

x(t = 0) = 1

I Analytical (i.e. exact) solution difficult to find

Kannan Moudgalya Differential equations using Scilab 7/24

Need for Numerical Solution

I Exact solution is ok for simple models

I What if the model is complicated?

I Consider integrating the more difficult problem:

dx

dt
=

2 + 18t + 68t2 + 180t3 + 250t4 + 250t5

x2

with initial condition,

x(t = 0) = 1

I Analytical (i.e. exact) solution difficult to find

Kannan Moudgalya Differential equations using Scilab 7/24

Simplest Numerical Solution: Explicit Euler

I Suppose that we want to integrate the following system:

dx

dt
= g(x , t)

with initial condition:

x(t = 0) = x0

I Approximate numerical method - divide time into equal
intervals: t0, t1, t2, etc.

xn − xn−1

∆t
= g(xn−1, tn−1)

I Simplifying,

xn − xn−1 = ∆t g(xn−1, tn−1)

xn = xn−1 + ∆t g(xn−1, tn−1)

I Given x0, can march forward and determine xn for all
future n.

Kannan Moudgalya Differential equations using Scilab 8/24

Simplest Numerical Solution: Explicit Euler

I Suppose that we want to integrate the following system:

dx

dt
= g(x , t)

with initial condition:

x(t = 0) = x0

I Approximate numerical method - divide time into equal
intervals: t0, t1, t2, etc.

xn − xn−1

∆t
= g(xn−1, tn−1)

I Simplifying,

xn − xn−1 = ∆t g(xn−1, tn−1)

xn = xn−1 + ∆t g(xn−1, tn−1)

I Given x0, can march forward and determine xn for all
future n.

Kannan Moudgalya Differential equations using Scilab 8/24

Simplest Numerical Solution: Explicit Euler

I Suppose that we want to integrate the following system:

dx

dt
= g(x , t)

with initial condition:

x(t = 0) = x0

I Approximate numerical method - divide time into equal
intervals: t0, t1, t2, etc.

xn − xn−1

∆t
= g(xn−1, tn−1)

I Simplifying,

xn − xn−1 = ∆t g(xn−1, tn−1)

xn = xn−1 + ∆t g(xn−1, tn−1)

I Given x0, can march forward and determine xn for all
future n.

Kannan Moudgalya Differential equations using Scilab 8/24

Simplest Numerical Solution: Explicit Euler

I Suppose that we want to integrate the following system:

dx

dt
= g(x , t)

with initial condition:

x(t = 0) = x0

I Approximate numerical method - divide time into equal
intervals: t0, t1, t2, etc.

xn − xn−1

∆t
= g(xn−1, tn−1)

I Simplifying,

xn − xn−1 = ∆t g(xn−1, tn−1)

xn = xn−1 + ∆t g(xn−1, tn−1)

I Given x0, can march forward and determine xn for all
future n.

Kannan Moudgalya Differential equations using Scilab 8/24

Example revisited

Recall the problem statement for numerical solution:

dx

dt
=

2 + 18t + 68t2 + 180t3 + 250t4 + 250t5

x2

with initial condition,

x(t = 0) = 1

Recall the Euler method:

dx

dt
= g(x , t)

Solution for initial condition, x(t = 0) = x0 is,

xn = xn−1 + ∆t g(xn−1, tn−1)

Kannan Moudgalya Differential equations using Scilab 9/24

Scilab Code

1 g e t f (” d i f f 1 . s c i ”) ;
2 g e t f (” E u l e r . s c i ”) ;
3 x0 =1; t0 =0; T= 0 : 0 . 1 : 2 4 ;
4 s o l = E u l e r (x0 , t0 , T , d i f f 1) ;
5 / / s o l = o d e (x 0 , t 0 , T , d i f f 1) ;

6 p l o t 2 d (T , s o l) , pause
7 p l o t 2 d (T,1+2∗T+5∗Tˆ 2 , 5)
8 x t i t l e (’ x v s . t : P o l y n o m i a l Problem ’ , ’ t ’ , ’ x ’)

1 f u n c t i o n x = E u l e r (x0 , t0 , t , g)
2 n = l e n g t h (t) , x = x0 ;
3 f o r j = 1 : n−1
4 x0 = x0 + (t (j +1)− t (j)) ∗ g (t (j) , x0) ;
5 x = [x x0] ;
6 end ;

1 f u n c t i o n xdot = d i f f 1 (t , x)
2 xdot = (2+18∗ t +68∗ t ˆ2+180∗ t ˆ3+250∗ t ˆ4+250∗ t ˆ5)/ x ˆ 2 ;

Kannan Moudgalya Differential equations using Scilab 10/24

Numerical Solution, Compared with Exact Solution

0 4 8 12 16 20 24
0

400

800

1200

1600

2000

2400

2800

3200

0 4 8 12 16 20 24
0

400

800

1200

1600

2000

2400

2800

3200

x vs. t: Polynomial Problem

t

x

Kannan Moudgalya Differential equations using Scilab 11/24

Predator-Prey Problem

I Population dynamics of predator-prey

I Prey can find food, but gets killed on meeting predator
I Examples: parasites and certain hosts; wolves and

rabbits
I x1(t) - number of prey; x2(t) - number of predator at

time t
I Prey, if left alone, grows at a rate proportional to x1

I Predator, on meeting prey, kills it ⇒ proportional to x1x2

dx1

dt
= 0.25x1 − 0.01x1x2

I Predator, if left alone, decrease by natural causes
I Predators increase their number on meeting prey

dx2

dt
= −x2 + 0.01x1x2

I Determine x1(t), x2(t) when x1(0) = 80, x2(0) = 30

Kannan Moudgalya Differential equations using Scilab 12/24

Predator-Prey Problem

I Population dynamics of predator-prey
I Prey can find food, but gets killed on meeting predator

I Examples: parasites and certain hosts; wolves and
rabbits

I x1(t) - number of prey; x2(t) - number of predator at
time t

I Prey, if left alone, grows at a rate proportional to x1

I Predator, on meeting prey, kills it ⇒ proportional to x1x2

dx1

dt
= 0.25x1 − 0.01x1x2

I Predator, if left alone, decrease by natural causes
I Predators increase their number on meeting prey

dx2

dt
= −x2 + 0.01x1x2

I Determine x1(t), x2(t) when x1(0) = 80, x2(0) = 30

Kannan Moudgalya Differential equations using Scilab 12/24

Predator-Prey Problem

I Population dynamics of predator-prey
I Prey can find food, but gets killed on meeting predator
I Examples: parasites and certain hosts; wolves and

rabbits

I x1(t) - number of prey; x2(t) - number of predator at
time t

I Prey, if left alone, grows at a rate proportional to x1

I Predator, on meeting prey, kills it ⇒ proportional to x1x2

dx1

dt
= 0.25x1 − 0.01x1x2

I Predator, if left alone, decrease by natural causes
I Predators increase their number on meeting prey

dx2

dt
= −x2 + 0.01x1x2

I Determine x1(t), x2(t) when x1(0) = 80, x2(0) = 30

Kannan Moudgalya Differential equations using Scilab 12/24

Predator-Prey Problem

I Population dynamics of predator-prey
I Prey can find food, but gets killed on meeting predator
I Examples: parasites and certain hosts; wolves and

rabbits
I x1(t) - number of prey; x2(t) - number of predator at

time t

I Prey, if left alone, grows at a rate proportional to x1

I Predator, on meeting prey, kills it ⇒ proportional to x1x2

dx1

dt
= 0.25x1 − 0.01x1x2

I Predator, if left alone, decrease by natural causes
I Predators increase their number on meeting prey

dx2

dt
= −x2 + 0.01x1x2

I Determine x1(t), x2(t) when x1(0) = 80, x2(0) = 30

Kannan Moudgalya Differential equations using Scilab 12/24

Predator-Prey Problem

I Population dynamics of predator-prey
I Prey can find food, but gets killed on meeting predator
I Examples: parasites and certain hosts; wolves and

rabbits
I x1(t) - number of prey; x2(t) - number of predator at

time t
I Prey, if left alone, grows at a rate proportional to x1

I Predator, on meeting prey, kills it ⇒ proportional to x1x2

dx1

dt
= 0.25x1 − 0.01x1x2

I Predator, if left alone, decrease by natural causes
I Predators increase their number on meeting prey

dx2

dt
= −x2 + 0.01x1x2

I Determine x1(t), x2(t) when x1(0) = 80, x2(0) = 30

Kannan Moudgalya Differential equations using Scilab 12/24

Predator-Prey Problem

I Population dynamics of predator-prey
I Prey can find food, but gets killed on meeting predator
I Examples: parasites and certain hosts; wolves and

rabbits
I x1(t) - number of prey; x2(t) - number of predator at

time t
I Prey, if left alone, grows at a rate proportional to x1

I Predator, on meeting prey, kills it ⇒ proportional to x1x2

dx1

dt
= 0.25x1 − 0.01x1x2

I Predator, if left alone, decrease by natural causes
I Predators increase their number on meeting prey

dx2

dt
= −x2 + 0.01x1x2

I Determine x1(t), x2(t) when x1(0) = 80, x2(0) = 30

Kannan Moudgalya Differential equations using Scilab 12/24

Predator-Prey Problem

I Population dynamics of predator-prey
I Prey can find food, but gets killed on meeting predator
I Examples: parasites and certain hosts; wolves and

rabbits
I x1(t) - number of prey; x2(t) - number of predator at

time t
I Prey, if left alone, grows at a rate proportional to x1

I Predator, on meeting prey, kills it ⇒ proportional to x1x2

dx1

dt
= 0.25x1 − 0.01x1x2

I Predator, if left alone, decrease by natural causes

I Predators increase their number on meeting prey

dx2

dt
= −x2 + 0.01x1x2

I Determine x1(t), x2(t) when x1(0) = 80, x2(0) = 30

Kannan Moudgalya Differential equations using Scilab 12/24

Predator-Prey Problem

I Population dynamics of predator-prey
I Prey can find food, but gets killed on meeting predator
I Examples: parasites and certain hosts; wolves and

rabbits
I x1(t) - number of prey; x2(t) - number of predator at

time t
I Prey, if left alone, grows at a rate proportional to x1

I Predator, on meeting prey, kills it ⇒ proportional to x1x2

dx1

dt
= 0.25x1 − 0.01x1x2

I Predator, if left alone, decrease by natural causes
I Predators increase their number on meeting prey

dx2

dt
= −x2 + 0.01x1x2

I Determine x1(t), x2(t) when x1(0) = 80, x2(0) = 30

Kannan Moudgalya Differential equations using Scilab 12/24

Predator-Prey Problem

I Population dynamics of predator-prey
I Prey can find food, but gets killed on meeting predator
I Examples: parasites and certain hosts; wolves and

rabbits
I x1(t) - number of prey; x2(t) - number of predator at

time t
I Prey, if left alone, grows at a rate proportional to x1

I Predator, on meeting prey, kills it ⇒ proportional to x1x2

dx1

dt
= 0.25x1 − 0.01x1x2

I Predator, if left alone, decrease by natural causes
I Predators increase their number on meeting prey

dx2

dt
= −x2 + 0.01x1x2

I Determine x1(t), x2(t) when x1(0) = 80, x2(0) = 30

Kannan Moudgalya Differential equations using Scilab 12/24

Explicit Euler for a System of Equations

dx1

dt
= g1(x1, . . . , xn, t)

...

dxN

dt
= gn(x1, . . . , xn, t)

d

dt

x1

...
xn

 =

g1(x1, . . . , xn, t − 1)
...

gn(x1, . . . , xn, t − 1)


x1

...
xn


t

=

x1

...
xn


t−1

+ ∆t

g1((x1, . . . , xn)|t−1, t − 1)
...

gN((x1, . . . , xn)|t−1, t − 1)


Solution in vector form:

x t = x t−1 + ∆tg(x t−1)

Kannan Moudgalya Differential equations using Scilab 13/24

Scilab Code for Predator-Prey Problem

1 g e t f (” pred . s c i ”) ;
2 g e t f (” E u l e r . s c i ”) ;
3 x0 = [8 0 , 3 0] ’ ; t0 =0; T= 0 : 0 . 1 : 2 0 ; T=T ’ ;
4 / / s o l = E u l e r (x0 , t 0 , T , p r e d) ;

5 s o l = ode (x0 , t0 , T , pred) ;
6 c l f () ;
7 p l o t 2 d (T , s o l ’)
8 x s e t (’ window ’ , 1)
9 p l o t 2 d (s o l (2 , :) , s o l (1 , :))

1 f u n c t i o n x = E u l e r (x0 , t0 , t , g)
2 n = l e n g t h (t) , x = x0 ;
3 f o r j = 1 : n−1
4 x0 = x0 + (t (j +1)− t (j))∗ g (t (j) , x0) ;
5 x = [x x0] ;
6 end ;

1 f u n c t i o n xdot = pred (t , x)
2 xdot (1) = 0 . 2 5∗ x (1) −0.01∗ x (1)∗ x (2) ;
3 xdot (2) = −x (2)+0.01∗ x (1)∗ x (2) ;

Kannan Moudgalya Differential equations using Scilab 14/24

Predator-Prey Problem: Solution by Euler

10 14 18 22 26 30 34 38 42 46
60

70

80

90

100

110

120

130

140

10 14 18 22 26 30 34 38 42 46
60

70

80

90

100

110

120

130

140

Predator−Prey by Euler for different step sizes, Black = 0.25, Red = 0.1

Predator

Prey

As step size increases, the solution diverges more from the
actual.

Kannan Moudgalya Differential equations using Scilab 15/24

General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative
I Approximation of using previous time values does not

work
I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK

I FOSS
I In use for thirty years
I Bugs have been removed by millions of users

Kannan Moudgalya Differential equations using Scilab 16/24

General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative

I Approximation of using previous time values does not
work

I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK

I FOSS
I In use for thirty years
I Bugs have been removed by millions of users

Kannan Moudgalya Differential equations using Scilab 16/24

General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative
I Approximation of using previous time values does not

work

I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK

I FOSS
I In use for thirty years
I Bugs have been removed by millions of users

Kannan Moudgalya Differential equations using Scilab 16/24

General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative
I Approximation of using previous time values does not

work
I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK

I FOSS
I In use for thirty years
I Bugs have been removed by millions of users

Kannan Moudgalya Differential equations using Scilab 16/24

General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative
I Approximation of using previous time values does not

work
I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK

I FOSS
I In use for thirty years
I Bugs have been removed by millions of users

Kannan Moudgalya Differential equations using Scilab 16/24

General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative
I Approximation of using previous time values does not

work
I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK

I FOSS
I In use for thirty years
I Bugs have been removed by millions of users

Kannan Moudgalya Differential equations using Scilab 16/24

General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative
I Approximation of using previous time values does not

work
I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK

I FOSS
I In use for thirty years
I Bugs have been removed by millions of users

Kannan Moudgalya Differential equations using Scilab 16/24

General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative
I Approximation of using previous time values does not

work
I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK
I FOSS

I In use for thirty years
I Bugs have been removed by millions of users

Kannan Moudgalya Differential equations using Scilab 16/24

General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative
I Approximation of using previous time values does not

work
I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK
I FOSS
I In use for thirty years

I Bugs have been removed by millions of users

Kannan Moudgalya Differential equations using Scilab 16/24

General method to handle stiff systems

I The predator-prey problem is an example of a stiff
system

I Results because of sudden changes in the derivative
I Approximation of using previous time values does not

work
I General approach to solve this problem:

xn = xn−1 + ∆t g(xn, tn)

I Requires solution by trial and error, as g(xn, tn) is
unknown

I Scilab has state of the art methods (ode) to solve such
systems

I Derived from ODEPACK
I FOSS
I In use for thirty years
I Bugs have been removed by millions of users

Kannan Moudgalya Differential equations using Scilab 16/24

Predator-Prey Problem by Scilab Integrator

Execute the following code, after commenting out Euler and
uncommenting ode:

1 g e t f (” pred . s c i ”) ;
2 g e t f (” E u l e r . s c i ”) ;
3 x0 = [8 0 , 3 0] ’ ; t0 =0; T= 0 : 0 . 1 : 2 0 ; T=T ’ ;
4 / / s o l = E u l e r (x0 , t 0 , T , p r e d) ;

5 s o l = ode (x0 , t0 , T , pred) ;
6 c l f () ;
7 p l o t 2 d (T , s o l ’)
8 x s e t (’ window ’ , 1)
9 p l o t 2 d (s o l (2 , :) , s o l (1 , :))

1 f u n c t i o n xdot = pred (t , x)
2 xdot (1) = 0 . 2 5∗ x (1) −0.01∗ x (1)∗ x (2) ;
3 xdot (2) = −x (2)+0.01∗ x (1)∗ x (2) ;

Kannan Moudgalya Differential equations using Scilab 17/24

Predator-Prey Problem: Solution by Scilab Integrator

15 19 23 27 31 35 39
70

80

90

100

110

120

130

Predator−Prey by Scilab integrator

Predator

Prey

Use the Scilab built-in integrator to get the correct solution

Kannan Moudgalya Differential equations using Scilab 18/24

Partial Differential Equations

Kannan Moudgalya Differential equations using Scilab 19/24

Parabolic Differential Equations

I Heat conduction equation

I Diffusion equation

∂u(t, x)

∂t
= c

∂2u(t, x)

∂x2

I Initial condition:

u(0, x) = g(x), 0 ≤ x ≤ 1

I Boundary conditions:

u(t, 0) = α, u(t, 1) = β, t ≥ 0

I Let um
j be approximate solution at xj = j∆x, tm = m∆t

um+1
j − um

j

∆t
=

c

(∆x)2
(um

j−1 − 2um
j + um

j+1)

Kannan Moudgalya Differential equations using Scilab 20/24

Parabolic Differential Equations

I Heat conduction equation

I Diffusion equation

∂u(t, x)

∂t
= c

∂2u(t, x)

∂x2

I Initial condition:

u(0, x) = g(x), 0 ≤ x ≤ 1

I Boundary conditions:

u(t, 0) = α, u(t, 1) = β, t ≥ 0

I Let um
j be approximate solution at xj = j∆x, tm = m∆t

um+1
j − um

j

∆t
=

c

(∆x)2
(um

j−1 − 2um
j + um

j+1)

Kannan Moudgalya Differential equations using Scilab 20/24

Parabolic Differential Equations

I Heat conduction equation

I Diffusion equation

∂u(t, x)

∂t
= c

∂2u(t, x)

∂x2

I Initial condition:

u(0, x) = g(x), 0 ≤ x ≤ 1

I Boundary conditions:

u(t, 0) = α, u(t, 1) = β, t ≥ 0

I Let um
j be approximate solution at xj = j∆x, tm = m∆t

um+1
j − um

j

∆t
=

c

(∆x)2
(um

j−1 − 2um
j + um

j+1)

Kannan Moudgalya Differential equations using Scilab 20/24

Parabolic Differential Equations

I Heat conduction equation

I Diffusion equation

∂u(t, x)

∂t
= c

∂2u(t, x)

∂x2

I Initial condition:

u(0, x) = g(x), 0 ≤ x ≤ 1

I Boundary conditions:

u(t, 0) = α, u(t, 1) = β, t ≥ 0

I Let um
j be approximate solution at xj = j∆x, tm = m∆t

um+1
j − um

j

∆t
=

c

(∆x)2
(um

j−1 − 2um
j + um

j+1)

Kannan Moudgalya Differential equations using Scilab 20/24

Parabolic Differential Equations

I Heat conduction equation

I Diffusion equation

∂u(t, x)

∂t
= c

∂2u(t, x)

∂x2

I Initial condition:

u(0, x) = g(x), 0 ≤ x ≤ 1

I Boundary conditions:

u(t, 0) = α, u(t, 1) = β, t ≥ 0

I Let um
j be approximate solution at xj = j∆x, tm = m∆t

um+1
j − um

j

∆t
=

c

(∆x)2
(um

j−1 − 2um
j + um

j+1)

Kannan Moudgalya Differential equations using Scilab 20/24

Finite Difference Approach

um+1
j − um

j

∆t
=

c

(∆x)2
(um

j−1 − 2um
j + um

j+1), µ =
c∆t

(∆x)2

um+1
j = um

j + µ(um
j−1 − 2um

j + um
j+1)

= µum
j−1 + (1− 2µ)um

j + µum
j+1

Write this equation at every spatial grid:

um+1
1 = µum

0 + (1− 2µ)um
1 + µum

2

um+1
2 = µum

1 + (1− 2µ)um
2 + µum

3

...

um+1
N = µum

N−1 + (1− 2µ)um
N + µum

N+1

Kannan Moudgalya Differential equations using Scilab 21/24

Finite Difference Approach - Continued

um+1
1 = µum

0 + (1− 2µ)um
1 + µum

2

um+1
2 = µum

1 + (1− 2µ)um
2 + µum

3

...

um+1
N = µum

N−1 + (1− 2µ)um
N + µum

N+1

In matrix form,
u1

u2
...

uN


m+1

=


1− 2µ µ
µ 1− 2µ µ

. . .

µ 1− 2µ




u1

u2
...

uN


m

+


µum

0

0
...

µum
N+1


Kannan Moudgalya Differential equations using Scilab 22/24

Conclusions

I Scilab is ideal for educational institutions, including
schools

I Built on a sound numerical platform

I It has good integrators for differential equations

I It is free

I Also suitable for industrial applications

Kannan Moudgalya Differential equations using Scilab 23/24

Conclusions

I Scilab is ideal for educational institutions, including
schools

I Built on a sound numerical platform

I It has good integrators for differential equations

I It is free

I Also suitable for industrial applications

Kannan Moudgalya Differential equations using Scilab 23/24

Conclusions

I Scilab is ideal for educational institutions, including
schools

I Built on a sound numerical platform

I It has good integrators for differential equations

I It is free

I Also suitable for industrial applications

Kannan Moudgalya Differential equations using Scilab 23/24

Conclusions

I Scilab is ideal for educational institutions, including
schools

I Built on a sound numerical platform

I It has good integrators for differential equations

I It is free

I Also suitable for industrial applications

Kannan Moudgalya Differential equations using Scilab 23/24

Conclusions

I Scilab is ideal for educational institutions, including
schools

I Built on a sound numerical platform

I It has good integrators for differential equations

I It is free

I Also suitable for industrial applications

Kannan Moudgalya Differential equations using Scilab 23/24

Thank you

Kannan Moudgalya Differential equations using Scilab 24/24

