Use of Scilab to demonstrate concepts in linear algebra and polynomials

Dr. Madhu N. Belur

Control \& Computing Department of Electrical Engineering
Indian Institute of Technology Bombay
Email: belur@ee.iitb.ac.in

Outline

(1) Matrices
(2) Polynomials
(3) Coprime polynomials
4) Fourier transform, polynomials, matrices

Introduction

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.
- Scilab provides all basic and many advanced tools.
- This talk focus: linear algebra and polynomials.

Defining a matrix

- $A=\left[\begin{array}{llll}1 & 3 & 4 & 6\end{array}\right]$
- $B=\left[\begin{array}{lllllll}1 & 3 & 4 & 6 ; 5 & 6 & 7 & 8\end{array}\right]$
- size(A), length(A), ones(A), zeros(B), zeros(3,5)

determinant/eigenvalues/trace

- $A=r a n d(3,3)$
- $\operatorname{det}(A), \operatorname{spec}(A), \operatorname{trace}(A)$
- sum($\operatorname{spec}(A))$
- if $\operatorname{sum}(\operatorname{spec}(A))==\operatorname{trace}(A)$ then disp('yes, trace equals sum')
else
disp('no, trace is not sum ')
end
- prod (spec (A))-det (A)

(Block) diagonalize A?

Let A be a square matrix $(n \times n)$ with distinct eigenvalues $\lambda_{1}, \ldots \lambda_{n}$. Eigenvectors (column vectors) v_{1} to v_{n} are then independent.

$$
\begin{gathered}
A v_{1}=\lambda_{1} v_{1} \quad A v_{2}=\lambda_{2} v_{2}
\end{gathered} \begin{gathered}
\ldots A v_{n}=\lambda_{n} v_{n} \\
A\left[v_{1} v_{2} \ldots v_{n}\right]=\left[v_{1} v_{2} \ldots v_{n}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
\end{gathered}
$$

(Column scaling of vectors v_{1}, etc is just post-multiplication.)

- $[$ spe, vect $]=\operatorname{spec}(A)$
- inv(vect) $* \mathrm{~A} * \mathrm{vect}$

Inverse exists because of independence assumption on eigenvectors.
Use 'bdiag' command for block diagonalization (when non diagonalizable).

Rank, SVD

- rank(A) $\operatorname{svd}(A)$
- $[u, s, v]=\operatorname{svd}(A)$
- check u'-inv(u) u*s*v-A

Example: Income tax

Income tax for a man earning Rs. NET (after exempted deductions) is

$$
\begin{aligned}
0 \% & \text { for the first } 1,50,000 \\
10 \% & \text { for the part between } 1,50,000 \text { and } 3,00,000 \\
20 \% & \text { for the part between } 3,00,000 \text { and } 5,00,000 \\
30 \% & \text { for the part above } 5,00,000
\end{aligned}
$$

-
- $[u, s, v]=\operatorname{svd}(A)$
- check u'-inv (u) u*s*v-A

Defining polynomials

Polynomials play a very central role in control theory: transfer functions are ratio of polynomials.

- $s=p o l y(0, ' s ')$
$\mathrm{s}=\mathrm{poly}(0$, 's', 'roots')
- $p=s^{\wedge} 2+3 * s+2 \quad p=p o l y\left(\left[\begin{array}{lll}2 & 3 & 1\end{array}\right],{ }^{\prime} s\right.$ ', 'coeff')
- roots $(p) \quad$ horner $(p, 5)$
- $a=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \quad \operatorname{horner}(p, a) \quad \operatorname{horner}\left(p, a^{\prime}\right)$
- w=poly(0,'w') horner (p,\%i*w)

Differentiation

- p=poly([1 $\left.2 \begin{array}{llll}1 & 3 & 4 & -3\end{array}\right], ' s^{\prime}, '$ coeff')
- cfp=coeff(p)
- diffpcoff=cfp(2:length(cfp)).*[1:length(cfp)-1]
- diffp=poly(diffpcoff,'s','coeff')
- degree(p) can be used instead of length(cfp)-1

More about horner

- w=poly(0,'w') horner(p,(1+w)/(1-w))
- $a=-r a n d(1,4) ; p=p o l y(a, ' s ') ;$
- q=horner(p,(w-1)/(1+w)) // bilinear(Cayley transform)
- abs(roots(numer(q)))

Multiplication and convolution

Output of a (linear and time-invariant) dynamical system is the convolution of the input signal with the 'impulse response'. Convolution: central role.
Polynomial multiplication is related to convolution of their coefficients

- $a=\left[\begin{array}{ll}1 & 2\end{array}\right] ;$ b=[4 5 6]; convol(a,b)
- pa=poly(a,'s','coeff'); pb=poly(b,'s','coeff'); coeff(pa*pb)
To convolve $u(\cdot)$ by $h(\cdot)$ is a linear operation on $u(\cdot)$. Write $h(s)=h_{0}+h_{1} s+h_{2} s^{2}+\cdots+h_{n} s^{n}$ (similarly $u(s)$) convolution $y:=h * u$ (convolution of h and u). $y(k)=\sum_{j=0}^{n+m} h(j) u(k-j)(u$ has degree $m)$.

Matrix for convolution

$$
\left[\begin{array}{llll}
y_{0} & y_{1} & \cdots & y_{n+m}
\end{array}\right]=\left[\begin{array}{llll}
u_{0} & u_{1} & \cdots & u_{m}
\end{array}\right] C_{h}
$$

where the matrix C_{h} with $m+1$ rows and $n+m+1$ columns is defined as
$\left[\begin{array}{cccccccc}h_{0} & h_{1} & h_{2} & \cdots & h_{n} & 0 & \cdots & 0 \\ 0 & h_{0} & h_{1} & \cdots & h_{n-1} & h_{n} & \cdots & 0 \\ \vdots & \ddots & \ddots & \cdots & \ddots & \ddots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & & & & h_{n}\end{array}\right]$

Coprime polynomials

Numerator and denominator polynomials of a transfer function being coprime is critical for controllability and observability of dynamical systems: Kalman

- polynomials $a(s)$ and $b(s)$ are called coprime if they have no common root.
- Equivalently, their gcd (greatest common divisor) is 1.

Problem: given $a(s)$ and $b(s)$, find polynomials $p(s)$ and $q(s)$ such that $a p+b q=0$.
Easy: take $p:=-b$ and $q=a$. Relation to coprimeness??

Coprimeness: equivalent statements

Consider polynomials $a(s)$ (of degree m) and $b(s)$ (of degree n).
Following statements are equivalent.

- a and b are coprime.
- there exist no polynomials p and q with degree $(p)<n$ degree $(q)<m$ such that $a p+b q=0$.
- there exist polynomials u and v such that $a u+b v=1$ (their gcd).
In fact, u and v having degrees at most $n-1$ and $m-1$
respectively can be found. Then they are unique.

Equivalent matrix formulations

$a p+b q$ can be considered as having coefficients obtained from

$$
\left[\begin{array}{lllllll}
p_{0} & p_{1} & \cdots & p_{m-1} & q_{0} & q_{1} & \cdots
\end{array} q_{n-1}\right]\left[\begin{array}{l}
C_{a} \\
C_{b}
\end{array}\right]
$$

C_{a} and C_{b} have m rows and n rows respectively, and both have $m+n$ columns each.
Hence, following are equivalent

- a and b are coprime
- $\left[\begin{array}{l}C_{a} \\ C_{b}\end{array}\right]$ is nonsingular
- $\left[\begin{array}{l}C_{a} \\ C_{b}\end{array}\right]$ has $\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]$ in its (left)-image

Above matrix: Sylvester resultant matrix, its determinant: resultant of two polynomials

Check this in scilab

- sylvester_mat.sci function constructs required matrix
- linsolve(sy', [1 000 ... 0$]^{\prime}$) // for coprime and non-coprime
- $\left[x\right.$, kern]=linsolve(sy', $\left[\begin{array}{lllll}0 & 0 & 0 & \cdots & 0\end{array}\right]^{\prime}$)

Uncontrollable and unobservable modes are related to eigenvectors corresponding to the eigenvalue which is the 'common root'.

Command 'find' : extracts TRUE indices

Consider the following problem: polynomials a and b might have roots 'close by'.
(Very difficult to control/observe: very high energy or input levels needed to control, or measurement very sensitive to noise. This is due to 'close to' uncontrollable/unobservable).
Find which are close to each other.

- Find roots of a and b. For each root of a, check if a root of b is within specified tolerance 'toler'.
- Two for loops?
- find allows extraction of indices satisfying a boolean expression

Coefficients and powers as vectors

Evaluation of a polynomial $p(s)$ at a value $s=a$ is a linear map on the coefficients.
$p(a)=\left[\begin{array}{llll}p_{0} & p_{1} & \cdots & p_{n}\end{array}\right]\left[\begin{array}{lllll}1 & a & a^{2} & \cdots & a^{n}\end{array}\right]^{\prime}$
Moreover, if n and m are the degrees of p and q respectively,

$$
p(s) q(s)=\left[\begin{array}{llll}
1 & s & s^{2} & s^{n}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{n}
\end{array}\right]\left[\begin{array}{lllll}
q_{0} & q_{1} & \cdots & q_{m}
\end{array}\right]\left[\begin{array}{c}
1 \\
s \\
\vdots \\
s^{m}
\end{array}\right]
$$

$(n+1) \times(m+1)$ matrix.

Bezoutian matrix

Bezoutian of a pair of polynomials $p(s)$ and $q(s)$ is defined as the symmetric matrix B such that (suppose $n \geqslant m$)

$$
\left[1 \times x^{2} x^{n-1}\right] B\left[\begin{array}{c}
1 \\
y \\
\vdots \\
y^{n-1}
\end{array}\right]=\frac{p(x) q(y)-p(y) q(x)}{x-y}
$$

B is $n \times n$ matrix. B is nonsingular if and only if p and q are coprime.
Size of B is roughly half the size of the Sylvester resultant matrix.
B is symmetric.
(Both can have polynomials (in γ) as their coefficients.)

Bezoutian matrix

Bezoutian of a pair of polynomials $p(s)$ and $q(s)$ is defined as the symmetric matrix B such that (suppose $n \geqslant m$)

$$
\left[\begin{array}{llll}
1 & x & x^{2} & x^{n-1}
\end{array}\right] B\left[\begin{array}{c}
1 \\
y \\
\vdots \\
y^{n-1}
\end{array}\right]=\frac{p(x) q(y)-p(y) q(x)}{x-y}
$$

B is $n \times n$ matrix. B is nonsingular if and only if p and q are coprime.
Size of B is roughly half the size of the Sylvester resultant matrix. B is symmetric.
(Both can have polynomials (in γ) as their coefficients.)

Discrete Fourier Transform

For a periodic sequence: DFT (Discrete Fourier Transform) gives the frequency content.
Linear transformation on the input sequence.
Take signal values of just one period: finite dimensional signal (due to periodicity of N).

$$
X(k):=\sum_{n=0}^{N-1} x(n) e^{\frac{-2 \pi i k}{N} n} \text { for } k=0, \ldots, N-1 \text { (analysis equation) }
$$

$e^{-2 \pi i k N}$ is the $N^{\text {th }}$ root of unity.
Inverse DFT for the synthesis equation. Normalization constants vary in the literature.

Discrete Fourier Transform

What is the matrix defining relating the DFT $X(k)$ of the signal $x(n)$? Define $\omega:=e^{\frac{-2 \pi i k}{N} n}$.

$$
\left[\begin{array}{c}
X(0) \\
X(1) \\
\vdots \\
X(N-1)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2 N-2} \\
1 & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2 N-2} & \cdots & \omega^{(N-1)^{2}}
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x(1) \\
\vdots \\
x(N-1)
\end{array}\right]
$$

(Note: $\omega^{N}=1$, etc.)
Check that the above $N \times N$ matrix has nonzero determinant. (Change of basis.) Moreover, columns are orthogonal. Orthonormal? (Normalization (by \sqrt{N}) not done yet.)

Discrete Fourier Transform and interpolation

Van der monde matrix: closely related to interpolation problems Of course, inverse DFT is nothing but interpolation! Used in computation of determinant of a polynomial matrix. Construct p(s) To obtain $X(k)$, evaluate p at $s=\omega^{k}$. $X(k)=p\left(\omega^{k}\right)$ horner command Given values of $p\left(\omega^{k}\right)$ for various ω^{k} (i.e., $X(k)$), find the coefficients of the polynomial $p(s)$: inverse DFT: interpolation of a polynomial to 'fit' given values at specified (complex) numbers.

Discrete Fourier Transform and interpolation

Van der monde matrix: closely related to interpolation problems Of course, inverse DFT is nothing but interpolation! Used in computation of determinant of a polynomial matrix.
Construct $p(s):=x_{0}+x_{1} s+x_{2} s^{2} \cdots+x_{N-1} s^{N-1}$
To obtain
$X(k)=p\left(\omega^{k}\right)$ horner command
Given values of $p\left(\omega^{k}\right)$ for various ω^{k} (i.e., $X(k)$), find the coefficients of the polynomial $p(s)$: inverse DFT: interpolation of a polynomial to 'fit' given values at specified (complex) numbers.

Discrete Fourier Transform and interpolation

Van der monde matrix: closely related to interpolation problems Of course, inverse DFT is nothing but interpolation! Used in computation of determinant of a polynomial matrix.
Construct $p(s):=x_{0}+x_{1} s+x_{2} s^{2} \cdots+x_{N-1} s^{N-1}$
To obtain $X(k)$, evaluate p at $s=\omega^{k}$.
$X(k)=p\left(\omega^{k}\right)$
Given values of $p\left(\omega^{k}\right)$ for various ω^{k} (i.e., $X(k)$), find the
coefficients of the polynomial $p(s)$: inverse DFT: interpolation of a
polynomial to 'fit' given values at specified (complex) numbers.

Discrete Fourier Transform and interpolation

Van der monde matrix: closely related to interpolation problems Of course, inverse DFT is nothing but interpolation! Used in computation of determinant of a polynomial matrix.
Construct $p(s):=x_{0}+x_{1} s+x_{2} s^{2} \cdots+x_{N-1} s^{N-1}$
To obtain $X(k)$, evaluate p at $s=\omega^{k}$.
$X(k)=p\left(\omega^{k}\right)$ horner command
Given values of $p\left(\omega^{k}\right)$ for various ω^{k} (i.e., $X(k)$), find the coefficients of the polynomial $p(s)$: inverse DFT: interpolation of a polynomial to 'fit' given values at specified (complex) numbers.

FFT

Since many powers of ω are repeated in that matrix (only $N-1$ powers are different, many real/imaginary parts are repeated for even N), redundancy can be drastically decreased.
Length of the signal is a power of 2: recursive algorithm possible

Since many powers of ω are repeated in that matrix (only $N-1$ powers are different, many real/imaginary parts are repeated for even N), redundancy can be drastically decreased.
Length of the signal is a power of 2: recursive algorithm possible.

FFT: recursive implementation

- Separate $p(s)$ (coefficients x_{0}, \ldots, x_{N-1}) into its even and odd powers (even and odd indices k). N is divisible by 2.
- Compute DFT of $p_{\text {odd }}$ and $p_{\text {even }}$ separately. (Do same separation, if possible.)
- Let $X_{\text {odd }}$ and $X_{\text {even }}$ denote the individual DFT's. (Same length.)
- Define $D:=\operatorname{diag}\left(1, \omega, \omega^{2}, \ldots, \omega^{\frac{N}{2}-1}\right)$
- Combine the two separate DFT's using the formula

$$
\begin{aligned}
& X(k)=X_{\text {even }}+D X_{\text {odd }} \text { for } k=0, \ldots, \frac{N}{2}-1 \\
& X(k)=X_{\text {even }}-D X_{\text {odd }} \text { for } k=\frac{N}{2}, \ldots, N-1
\end{aligned}
$$

Conclusions

- Matrices and polynomials provide rich source of problems
- With good computational tools, the future lies in computational techniques
- Scilab provides handy tools
- We saw: if elseif else end for horner poly coeff
- Recursive use of function
- find conv max min

