Introduction to Wavelets in Scilab

Anuradha Amrutkar

Indian Institute of Technology Bombay anuradha.amrutkar@gmail.com

National Workshop on Scilab Sinhagad College of Engineering, Wadgaon, Pune January 5, 2011

- The word WAVELET literally means small wave.
- Wavelets are localised waves and they extend not from ∞ to + ∞ but only for a finite duration of time.

- Since waves extend over the entire space, they do not need any shift parameter.
- Thus, a Fourier Transform maps 1-D time signals to 1-D frequency signals, whereas
- The wavelet transform maps 1-D time signals to 2-D scale(frequency) and shift parameter signals.

Example1

Example1

 Let us see a program which finds out the approximate coefficients and detailed coefficients of a given signal.

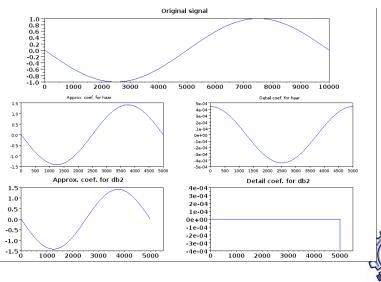
Example1:dwt.sce

Example1:dwt.sce

In this Example:

- 1. x=linspace(-%pi,%pi,10000);
- 2. s=sin(x); //Constructs and Elimentary sine wave signal
- 3. [ca1,cd1] = dwt(s,'haar'); // Perform single-level
 discrete wavelet transform of "s" by "haar".
- The Graph of Apporoximate co-efficients(cA) and Detailed co-efficient(cD) is Plotted using the plot() command
- 5. The above procedure is repeated for "db2" type of wavelet.

Example1:dwt.png



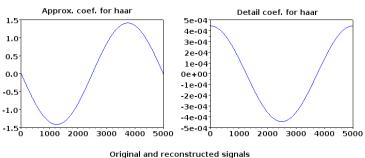
Example2:idwt.sce

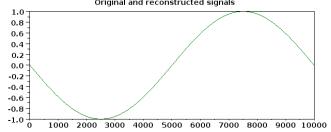
Example2:idwt.sce

In this Example:

- 1. Steps 1,2 and 3 are same as above.
- 2. ss = idwt(ca1,cd1,'haar'); //Perform single-level
 inverse discrete wavelet transform, illustrating that idwt is the
 inverse function of dwt.
- The Graph of Apporoximate co-efficients(cA) and Detailed co-efficient(cD) is Plotted using the plot() command

Example1:idwt.png





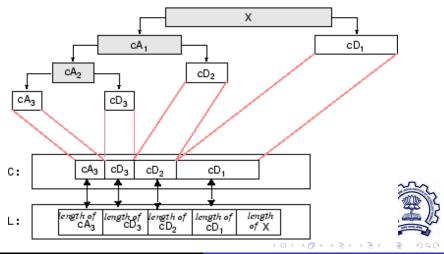
Commands: dwt & idwt

Commands: dwt & idwt

- → dwt:Discrete Fast Wavelet Transform
 - dwt is for discrete fast wavelet transform with the signal extension method optional argument.
 - As output it gives values of cA : Approximate co-efficients and cD : Detailed co-efficients
 - For Syntax Detailed help see type "help dwt"
- → idwt:Inverse Discrete Fast Wavelet Transform
 - idwt is for inverse discrete fast wavelet transform.
 - Coefficent could be void vector as '[]' for cA or cD.
 - As output it gives a Reconstructed Vector
 - For Syntax Detailed help see type "help idwt"

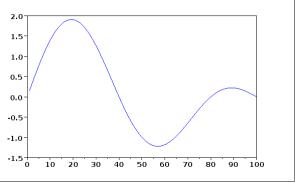
Let us Revise the Decomposition Diagram for the wavelets:

Decomposition:



In this Example:

- 1. s=[1:100];
- 2. $1_s = length(s)$
- 3. a = sin(2*%pi*s/100)+sin(3*%pi*s/100); //Constructs and Elimentary sine wave signal



The coefficients of all the components of a third-level decomposition (that is, the third-level approximation and the first three levels of detail) are returned concatenated into one vector, C.

Vector L gives the lengths of each component.

```
4. [C,L] = wavedec(a,3,'haar');
```


To extract the level 3 approximation coefficients from C, type:

```
5. cA3 = appcoef(C,L,'haar',3);
```

To extract the levels 3, 2, and 1 detail coefficients from C, type

```
6. cD3 = detcoef(C,L,3);
```

- 7. cD2 = detcoef(C,L,2);
- 8. cD1 = detcoef(C,L,1);

The above can be written in one command as:

```
9. [cD1,cD2,cD3] = detcoef(C,L,[1,2,3]);
```

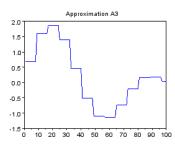

To reconstruct the level 3 approximation from C, type

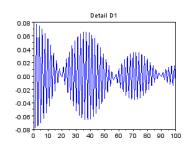
```
10. A3 = wrcoef('a',C,L,'haar',3);
```

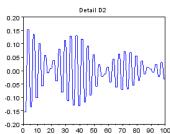
To reconstruct the details at levels 1, 2, and 3, from C, type

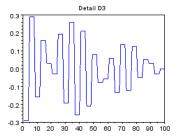
```
11. D1 = wrcoef('d',C,L,'haar',1);
```


Display the results of a multilevel decomposition









wavelet.sce

wavelet.sce

To reconstruct the original signal from the wavelet decomposition structure, type

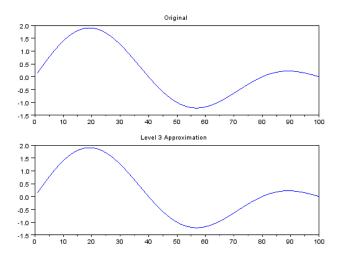
```
14. A3 = waverec(C,L,'haar');
```

Of course, in discarding all the high-frequency information, we've also lost many of the original signal's sharpest features.

Original Vs Approximate

Original Vs Approximate

To compare the approximation to the original signal, type



Commands Used

Commands Used

The commands used in the Multi-level Decomposition and Construction of Approximate and Detailed Coefficients are:

- * wavedec: Multiple Level Discrete Fast Wavelet
 Transform
- * waverec: Multiple Level Inverse Discrete Fast
 Wavelet Transform
- \star approach: One Dimension Approximation Coefficent Reconstruction
- ★ detcoef: One Dimension Detail Coefficent Extraction
- \star wrcoef: Restruction from single branch from multiple level

Help

Help

Please type **help command_name** to see the Usage, Description and Examples for that particular command.

Further Exploration

Further Exploration

Optimal de-noising requires a more subtle approach called thresholding.

Further Exploration

Optimal de-noising requires a more subtle approach called thresholding.

This involves discarding only the portion of the details that exceeds a certain limit.

Thank You!!

Thank You!!

Thank You!

